Skip Nav Destination
Close Modal
Search Results for
specimen preparation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 438 Search Results for
specimen preparation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400169
EISBN: 978-1-62708-258-7
... Abstract This chapter instructs the metallographer on the basic skills required to prepare a polished metallographic specimen. It is organized in a chronological sequence starting with the information-gathering process on the material being investigated, then moving on to sectioning, mounting...
Abstract
This chapter instructs the metallographer on the basic skills required to prepare a polished metallographic specimen. It is organized in a chronological sequence starting with the information-gathering process on the material being investigated, then moving on to sectioning, mounting, grinding, and polishing processes, and ending with methods used to properly store metallographic specimens. The discussion covers the preparation procedures, the materials being investigated, and equipment used to perform these procedures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850060
EISBN: 978-1-62708-260-0
... and cures. It also provides recommendations for handling specific materials and addresses safety concerns. light microscopy metallographic sectioning specimen preparation 2-1 Introduction The preparation steps for light microscopy, often viewed as a tedious, frustrating process, are of great...
Abstract
This chapter explains how to prepare metallographic samples for light microscopy and how to anticipate and avoid related problems. It describes standard practices and procedures for sectioning, mounting, grinding, and polishing and identifies common defects along with their causes and cures. It also provides recommendations for handling specific materials and addresses safety concerns.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030023
EISBN: 978-1-62708-349-2
... Abstract Specimen preparation is the first step that determines the quality of the microstructural information that can be obtained using optical microscopy. This chapter describes the sample preparation methods that are applicable to most types of composite materials containing short...
Abstract
Specimen preparation is the first step that determines the quality of the microstructural information that can be obtained using optical microscopy. This chapter describes the sample preparation methods that are applicable to most types of composite materials containing short discontinuous or continuous fibers. The sample preparation methods cover documentation and labeling of samples, sectioning the composite, clamp-mounting composite samples, mounting composite samples in casting resins, and the addition of contrast dyes to casting resins. Information on the molds used for mounting composite materials is provided. The steps recommended to achieve a good mounted specimen without voids or specimen pull-out are also described. The chapter discusses the processes for clamping mounted composite samples in automated polishing heads and mounting composite materials for hand polishing. A summary of the mounting technique is also included.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870351
EISBN: 978-1-62708-314-0
... Abstract This chapter discusses composite testing procedures, including tension, compression, shear, flexure, and fracture toughness testing as well as adhesive shear, peel, and honeycomb flatwise tension testing. It also discusses specimen preparation, environmental conditioning, and data...
Abstract
This chapter discusses composite testing procedures, including tension, compression, shear, flexure, and fracture toughness testing as well as adhesive shear, peel, and honeycomb flatwise tension testing. It also discusses specimen preparation, environmental conditioning, and data analysis.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060155
EISBN: 978-1-62708-355-3
..., compounding, specimen preparation, specimen type, vulcanization parameters, and temperature. The chapter also provides information on ASTM D 412, the most widely referenced standard for determining the tensile properties of elastomers. elastomers tensile testing ELASTOMERS comprise a subclass...
Abstract
Elastomers comprise a subclass of polymers that display the ability to stretch and recover that is typical of a rubber band. This chapter describes the properties determined by tensile testing of elastomers and the factors influencing them, namely, structuring of the molecular matrix, compounding, specimen preparation, specimen type, vulcanization parameters, and temperature. The chapter also provides information on ASTM D 412, the most widely referenced standard for determining the tensile properties of elastomers.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400087
EISBN: 978-1-62708-258-7
... and a metallographer working alone at a small iron foundry. The three basic areas in all metallography laboratories are discussed: the specimen preparation area, the polishing/etching area, and the observation/micrography area. Important safety issues in a metallographic laboratory are also considered. heat...
Abstract
This chapter discusses the important role of metallography and the metallographer in predicting and understanding the properties of metals and alloys. Examples are presented of a metallographer working as part of a team in a research laboratory of a large steel company and a metallographer working alone at a small iron foundry. The three basic areas in all metallography laboratories are discussed: the specimen preparation area, the polishing/etching area, and the observation/micrography area. Important safety issues in a metallographic laboratory are also considered.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.htpa.t53310119
EISBN: 978-1-62708-346-1
.... It presents the criteria that can be used to select a suitable hardness testing method for elastomers or plastics and describes processes involved in specimen preparation and equipment calibration. Barcol hardness test elastomers hardness testing plastics Shore durometer hardness test Hardness...
Abstract
This chapter reviews the tests and procedures used for measuring hardness of plastics and elastomers. The conventional testing methods (Rockwell, Vickers, Brinell, and Knoop) used for testing of metals are based on the idea that hardness represents the resistance against permanent plastic deformation of the material to be tested. However, elastic deformation must be considered in hardness measurement of elastomers. This chapter discusses the equipment and processes involved in the durometer (Shore) test, the International Rubber Hardness Degree test, and other specialized tests. It presents the criteria that can be used to select a suitable hardness testing method for elastomers or plastics and describes processes involved in specimen preparation and equipment calibration.
Image
Published: 01 August 1999
to protect the outer edge of the scale during specimen preparation. A, unetched, 1000×. B, hydrochloric-alcohol, 1000×. (b) The white band at the top of the micrograph is an electrodeposit of nickel used to protect the outer edge of the scale during specimen preparation. Unetched. 1000×. (c) A, unetched
More
Image
Published: 01 August 1999
to protect the outer edge of the scale during specimen preparation. A, unetched, 1000×. B, hydrochloric-alcohol, 1000×. (b) The white band at the top of the micrographs is an electrodeposit of nickel used to protect the outer edge of the scale during specimen preparation. Unetched. 1000×. (c) A, unetched
More
Image
in The Expanded Metallographic Laboratory
> Metallographer’s Guide: Practices and Procedures for Irons and Steels
Published: 01 March 2002
Fig. 6.27 Preparing a specimen from an AISI/SAE 1335 steel bar for compositional analysis on the electron probe microanalyzer. (a) Vickers microhardness indentations used to mark the location of ferrite banding and (b) the same location with the etch removed by light polishing. 4% picral etch
More
Image
in Metallographic Technique—Electron Microscopy and Other Advanced Techniques
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
a surface roughness better than 2 μm. Image taken with “3D optical microscope” is ideal to check the quality of specimen preparation.
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040030
EISBN: 978-1-62708-428-4
... Abstract This article presents best practices for the metallographic preparation of specimens produced via thermal spray coating methods. It outlines typical metallographic preparation process flow, highlighting important considerations for obtaining a clear and representative specimen suitable...
Abstract
This article presents best practices for the metallographic preparation of specimens produced via thermal spray coating methods. It outlines typical metallographic preparation process flow, highlighting important considerations for obtaining a clear and representative specimen suitable for characterization via examination techniques, such as optical or electron microscopy. The process flow includes preliminary resin infiltration, sectioning, mounting, grinding, and polishing. To aid in the identification and resolution of common issues during subsequent specimen analysis, the article presents common issues, along with causes and mitigation strategies. It describes the processes involved in the interpretation of the thermal spray coating microstructure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060183
EISBN: 978-1-62708-355-3
... designed test methods. These test methods are mechanically simple in concept but extremely sensitive to specimen preparation and test-execution procedures. They include: Tensile tests Compression tests Shear tests Flexural tests Fracture tests Fatigue tests These test methods...
Abstract
This chapter presents the fundamentals of tensile testing of fiber-reinforced polymer composites. Basic tensile testing of polymer composites is divided into lamina and laminate testing. The chapter focuses on tensile testing of laminates. It discusses the most common tensile test methods that have been standardized for fiber-reinforced composite materials. It also briefly reviews considerations in tensile testing of metal-matrix composites.
Image
Published: 01 August 1999
to protect the outer edge of the scale during specimen preparation; the black band between the scale and the substrate is a discontinuity: the scale has become detached from the substrate. (a) Unetched. 1000×. (b) Hydrochloric-alcohol. 1000×. (c) Outer surface. Unetched. 2000×. (d) Oxide-metal
More
Image
Published: 01 August 1999
used to protect the outer edge of the scale during specimen preparation; the black band between the scale and the substrate is a discontinuity: the scale has become detached from the substrate. (a) Unetched. 1000×. (b) Hydrochloric-alcohol. 1000×. (c) Outer surface. Unetched. 2000×. (d) Oxide
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030115
EISBN: 978-1-62708-349-2
... specimens of fiber-reinforced polymeric composites for examination by transmitted-light microscopy techniques. The preparation steps covered are a selection of the rough section, preparation of the rough section for preliminary mounting, grinding and polishing the primary-mount first surface, mounting...
Abstract
Transmitted-light methods reveal more details of the morphology of fiber-reinforced polymeric composites than are observable using any other available microscopy techniques. This chapter describes the various aspects relating to the selection and preparation of ultrathin-section specimens of fiber-reinforced polymeric composites for examination by transmitted-light microscopy techniques. The preparation steps covered are a selection of the rough section, preparation of the rough section for preliminary mounting, grinding and polishing the primary-mount first surface, mounting the first surface on a glass slide, and preparing the second surface (top surface). The optimization of microscope conditions and analysis of specimens by microscopy techniques are also covered. In addition, examples of composite ultrathin sections that are analyzed using transmitted-light microscopy contrast methods are shown throughout.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400149
EISBN: 978-1-62708-258-7
... that are not part of the microstructure. As is seen later in Chapter 7 , the specimen preparation for an automatic image analyzer must be closely controlled in order to prevent inaccurate measurements. Sample Requirements It must be pointed out that the metallographic specimens for an image analyzer must...
Abstract
Several specialized instruments are available for the metallographer to use as tools to gather key information on the characteristics of the microstructure being analyzed. These include microscopes that use electrons as a source of illumination instead of light and x-ray diffraction equipment. This chapter describes how these instruments can be used to gather important information about a microstructure. The instruments covered include image analyzers, transmission electron microscopes, scanning electron microscopes, electron probe microanalyzers, scanning transmission electron microscopes, x-ray diffractometers, microhardness testers, and hot microhardness testers. A list of other instruments that are usually located in a research laboratory or specialized testing laboratory is also provided.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270063
EISBN: 978-1-62708-301-0
... but not the primary cause. Such cases are included in this section only to indicate the location and possible failure modes in such components. In these investigations, members of the Failure Analysis and Accident Investigation Group contributed significantly at various stages, such as specimen preparation...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030043
EISBN: 978-1-62708-349-2
... Abstract Rough grinding and polishing of mounted specimens are required to prepare the composite sample for optical analysis. This chapter describes these techniques for preparing composite materials. First, it provides information on grinding and polishing equipment and describes the processes...
Abstract
Rough grinding and polishing of mounted specimens are required to prepare the composite sample for optical analysis. This chapter describes these techniques for preparing composite materials. First, it provides information on grinding and polishing equipment and describes the processes and process variables for sample preparation. Then, the chapter discusses the processes of abrasive sizing for grinding and rough polishing. Next, it provides a summary of grinding methods, rough polishing, and final polishing. Finally, information on common polishing artifacts that can result from any of the steps is provided.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910427
EISBN: 978-1-62708-250-1
... the purposes of corrosion tests, the logical steps in a test program, and the preparation and cleaning of test specimens. The focus then moves on to discuss the types and applications of these test categories and the associated evaluation procedures. Excluding electrochemical tests which are addressed...
Abstract
Corrosion testing and monitoring are powerful tools in the fight to control corrosion. This chapter provides a general overview of three major categories of corrosion tests, namely laboratory tests, pilot-plant tests, and field tests. It begins with brief sections describing the purposes of corrosion tests, the logical steps in a test program, and the preparation and cleaning of test specimens. The focus then moves on to discuss the types and applications of these test categories and the associated evaluation procedures. Excluding electrochemical tests which are addressed separately in this chapter, the other laboratory tests covered under this category are simulated atmosphere tests, salt-spray tests, and immersion tests. Only corrosion testing in the atmosphere is discussed in the section on field tests. Corrosion monitoring techniques are finally considered, covering the characteristics of corrosion monitoring techniques, the factors to be considered in selecting a corrosion-monitoring method, and the strategies in corrosion monitoring.
1