Skip Nav Destination
Close Modal
Search Results for
spall-resistant metals
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 156 Search Results for
spall-resistant metals
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310057
EISBN: 978-1-62708-286-0
... of spalling and cracking of oxide scale. It ends with a section providing information on oxidation behaviors under less-oxidizing atmospheres. oxidation stainless steel spalling cracking chromium oxide Wagner theory Summary STAINLESS STEEL, often considered mainly as a corrosion-resisting...
Abstract
Stainless steel retains strength and has excellent oxidation resistance from room temperature to nearly 1000 deg C relative to competitive materials. This chapter focuses on the high-temperature oxidation of stainless steel by oxygen or water vapor. It begins by discussing the thermodynamic conditions and electrochemical nature of oxidation and providing information on transient oxidation. This is followed by a description of Wagner's theory for metal oxidation. The volatile nature of Cr 2 O 3 is then reviewed. The chapter further discusses the causes and preventive measures of spalling and cracking of oxide scale. It ends with a section providing information on oxidation behaviors under less-oxidizing atmospheres.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030025
EISBN: 978-1-62708-282-2
... in spalling that acts as a stress-relief mechanism; in some cases, the protection offered by such scales may be low at this point, as shown in Fig. 5 . Fig. 5 Cr 2 O 3 scale formed on pure chromium at 1100 °C (2012 °F). A Pilling-Bedworth ratio of 2.0 results in high compressive stress in the scale...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300079
EISBN: 978-1-62708-323-2
...), and this is the situation with droplet erosion. However, metal coatings such as thermal spray deposits of metals, cermets, and ceramics can be susceptible to damage by fracture. Often, the coatings can spall since they are held to metal surfaces by mostly mechanical locking to surface texture features. Thermal spray...
Abstract
This chapter covers common types of erosion, including droplet, slurry, cavitation, liquid impingement, gas flow, and solid particle erosion, and major types of wear, including abrasive, adhesive, lubricated, rolling, and impact wear. It also covers special cases such as galling, fretting, scuffing, and spalling and introduces the concepts of tribocorrosion and biotribology.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770135
EISBN: 978-1-62708-337-9
... that appears to travel along the case-core interface before secondary cracks work their way to the surface. Failure due to this fatigue process, for which the time to failure can be quite short, is called deep-spalling fatigue or case crushing. Considering case-crushing, the total carburized case depth...
Abstract
The design of case-hardened components is an iterative process, requiring the consideration of multiple interrelated factors. This chapter walks readers through the steps involved in selecting an appropriate material and assessing the influence of alloy composition and cooling rate on core properties including hardenability, microstructure, tensile and yield strength, ductility, toughness, and fatigue resistance. It likewise explains how carbon affects case hardenability, surface hardness, and case toughness and how case depth influences residual stresses and bending and contact fatigue. It also discusses the effect of quenching methods and addresses the issue of distortion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1985
DOI: 10.31399/asm.tb.sagf.t63420085
EISBN: 978-1-62708-452-9
... (spalling), thermal fatigue, and shaft fatigue. Tooth bending impact includes tooth shear, tooth chipping, case crushing, and torsional shear. abrasive tooth wear bending fatigue bending impact failure mode analysis gears Although this definition generally has been accepted...
Abstract
This chapter presents a detailed discussion on the three most frequent gear failure modes. These include tooth bending fatigue, tooth bending impact, and abrasive tooth wear. Tooth bending fatigue includes surface contact fatigue (pitting), rolling contact fatigue, contact fatigue (spalling), thermal fatigue, and shaft fatigue. Tooth bending impact includes tooth shear, tooth chipping, case crushing, and torsional shear.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250257
EISBN: 978-1-62708-345-4
... than 5% austenite. The pitted area low on the active profile showed evidence of a heavy metal-to-metal sliding action which tended to produce adhesion. The central profile area, being subjected to spalling, had a surface that was relatively unaltered ( Fig. 49 ). In the same area...
Abstract
Gears can fail in many different ways, and except for an increase in noise level and vibration, there is often no indication of difficulty until total failure occurs. This chapter begins with the classification of gear failure modes, followed by sections discussing the characteristics of various fatigue failures. Then, it provides information on the modes of impact fractures, wear, scuffing, and stress rupture. Next, the chapter describes the causes of gear failures and discusses the processes involved in conducting the failure analysis. Finally, the chapter presents examples of gear failure analysis.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080005
EISBN: 978-1-62708-304-1
... is the oxide scale thickness, t is the exposure time, and k ′ is the parabolic constant; when t = 0, X = 0. 3.3.2 Linear Kinetics When the oxide scale forming on the metal surface provides no protection barrier due to oxide cracking and spalling, volatile oxides, and molten oxidation products...
Abstract
Many metallic components, such as retorts in heat treat furnaces, furnace heater tubes and coils in chemical and petrochemical plants, waterwalls and reheater tubes in boilers, and combustors and transition ducts in gas turbines, are subject to oxidation. This chapter explains how oxidation affects a wide range of engineering alloys from carbon and Cr-Mo steels to superalloys. It discusses the kinetics and thermodynamics involved in the formation of oxides and the effect of surface and bulk chemistry. It provides oxidation data for numerous alloys and intermetallics in terms of weight gain, metal loss, depth of attack, and oxidation rate. It also discusses the effect of metallurgical and environmental factors such as oxygen concentration, high-velocity combustion gas streams, chromium depletion and breakaway, component thickness, and water vapor.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300335
EISBN: 978-1-62708-323-2
... Aluminum oxide These coatings are thicker than vacuum coatings and are appropriate in tribosystems that can tolerate several micrometers of wear. Fusion Hardfacing Thermal spray coatings are mechanically bonded to a surface, and they can spall if mistakes are made in the application process...
Abstract
This chapter covers coatings and treatments that are used to improve the friction and wear behaviors of materials. It describes modifications that work by hardening contacting surfaces, including heat treating, vacuum coating, thermal spray, and plating, and those that separate or lubricate surfaces, including solid film, chemical conversion, and vacuum coatings, surface oiling and texturing, and lubricating platings. It compares and contrasts methods based on thickness and depth and their relative effect on friction, erosion, and wear.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280287
EISBN: 978-1-62708-267-9
... previously, one of the facts of oxide formation is that the oxide scales on superalloys are subject to spalling, owing to severe thermal stresses induced by the cyclic nature of most heat engine operations. Superalloys rarely operate at a single temperature but cycle between temperatures and, in the case...
Abstract
Superalloys tend to operate in environments where they are subjected to high-temperature corrosion, oxidation, and the erosive effects of hot gases. This chapter discusses the nature of these attacks and the effectiveness of various protection methods. It describes the primary forms of oxidation, the development of protective oxides, and the conditions associated with mixed gas corrosion and hot corrosion attack. It discusses oxidation and corrosion testing, the equipment used, and various ways to present the associated data. It describes the effect of gaseous oxidation on different alloys, discusses the formation of oxide scale in the presence of mixed gases, and explains how alloy composition contributes to oxide growth. The chapter discusses the underlying chemistry of hot corrosion, how to identify its effects, and how it progresses under various conditions. It also discusses protective coatings, including aluminide diffusion, overlay, and thermal barrier types, and how they perform in different environments based on their ability to tolerate strain.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060251
EISBN: 978-1-62708-355-3
... or using a backing plate and correcting for partial transmission of the wave transmitted through the interface. Magnetic particle velocity gages can be used for nonconducting targets such as plastics and rocks, but they are not suitable for metals. Spall stress can be determined by two methods...
Abstract
High strain rate tensile testing is used to understand the response of materials to dynamic loading. The behavior of materials under high strain rate tensile loads may differ considerably from that observed in conventional tensile tests. This chapter discusses the processes involved in determining strain rate effects in tension by conventional tensile tests and covers expanding ring tests, flat plate impact tests, split-Hopkinson pressure bar tests, and rotating wheel tests.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300199
EISBN: 978-1-62708-323-2
... hardened where spalling is evident, and in some places alloy steels containing manganese (13% Mn) are put in frogs and switches. These steels work-harden on impact and resist spalling from repeated compressive stressing. Fig. 8.6 Railroad track spalling from rolling wear and surface fatigue...
Abstract
This chapter covers the friction and wear behaviors of carbon, alloy, and tool steels. It begins a review of commercially available shapes and forms. It then describes the metallurgy and microstructure of various designations and grades of each type of steel and explains how it affects their performance in adhesive and abrasive wear applications and in environments where they are subjected to solid particle, droplet, slurry, and cavitation erosion and fretting damage.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120123
EISBN: 978-1-62708-269-3
... solubility within the titanium lattice. Under these conditions, surface spalling does not occur; the formation of hydride particles through the entire thickness of the metal results in complete embrittlement and high susceptibility to failure. This type of embrittlement is often seen in material that has...
Abstract
Titanium and its alloys are used chiefly for their high strength-to-weight ratio, but they also have excellent corrosion resistance, better even than stainless steels. Titanium, as the chapter explains, is protected by a tenacious oxide film that forms rapidly on exposed surfaces. The chapter discusses the factors that influence the growth and quality of this naturally passivating film, particularly the role of oxidizing and inhibiting species, temperature, and alloying elements. It also discusses the effect of different corrosion processes and environments as well as hydrogen, stress-corrosion cracking, liquid metal embrittlement, and surface treatments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060385
EISBN: 978-1-62708-261-7
.... Not etched. Original magnification: 60× The type of damage in conventional bearing steels from contact fatigue involves micropitting, macropitting, and spalling ( Fig. 16.10 ). In hybrid ceramics coatings and overlay coatings, the damage typically involves delamination ( Fig. 16.11 ). Factors...
Abstract
Durability is a generic term used to describe the performance of a material or a component made from that material in a given application. In order to be durable, a material must resist failure by wear, corrosion, fracture, fatigue, deformation, and exposure to a range of service temperatures. This chapter covers several types of component and material failure associated with wear, temperature effects, and crack growth. It examines temperature-induced, brittle, ductile, and fatigue failures as well as failures due to abrasive, erosive, adhesive, and fretting wear and cavitation fatigue. It also discusses preventative measures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240395
EISBN: 978-1-62708-251-8
... undesirable base metal dilution and loss of hardness of the hard-facing alloy. The absence of a steep thermal gradient in oxyacetylene welding reduces cracking or spalling because thermal stresses are reduced. Arc welding overlays are applied by gas tungsten arc welding (GTAW), shielded metal arc welding...
Abstract
This chapter discusses the process characteristics, advantages, disadvantages, and applications of various processes involved in surface hardening of steel. These include pack carburizing, liquid carburizing, gas carburizing, vacuum carburizing, plasma carburizing, gas nitriding, liquid nitriding, carbonitriding, and hardfacing. The chapter describes two surface hardening processes by localized heat treatment: flame hardening and induction hardening. It also briefly summarizes other surface hardening processes, namely, aluminizing, siliconizing, chromizing, titanium carbide coatings, and boronizing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1985
DOI: 10.31399/asm.tb.sagf.t63420185
EISBN: 978-1-62708-452-9
... a very fine acicular martensite retaining less than 5% austenite. The pitted area low on the active profile shows evidence of a heavy metal-to-metal sliding action tending to be adhesive. The central profile area, subjected to spalling, has a surface that is relatively unaltered ( Fig. 6-7c...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390039
EISBN: 978-1-62708-459-8
...; in this circumstance, spalling is imminent over the entire surface. Another cause can be material buildup or roughening, leading to more rapid adhesive and/or abrasive wear over time. Metal forming dies and tools generally have relatively high wear rates, and the wear-in period is so short that it can be ignored...
Abstract
This chapter covers the different types of wear encountered in metalworking processes. It discusses the mechanisms involved in adhesive, abrasive, chemical, and fatigue wear and key contributing factors, including the composition and structure of tool and workpiece materials, the characteristics of contact surfaces, and loading forces imposed by the process. It describes the nature of metal transfer between tool and workpiece surfaces and the role of lubricants, coatings, and textures. It also discusses the use of wear maps, the effects of adhesion, and material-lubricant interactions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310225
EISBN: 978-1-62708-286-0
... cyclic oxidation and the ensuing spalling of the oxide scale. There are numerous alloying approaches for optimizing the ferritic stainless alloys for spalling resistance. All approaches involve raising chromium content but use different techniques to enhance the effect of chromium. Table 1 lists...
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300271
EISBN: 978-1-62708-323-2
...° with an alumina abradant; material spalls from cracks initiated by the indenting of sharp particles. Apparently, glass spheres do not produce this severe damage, and alumina performs better than 304 stainless steel. The standard cavitation tests, ASTM International G32 and G134, do not show data on ceramics...
Abstract
This chapter concerns itself with the tribology of ceramics, cermets, and cemented carbides. It begins by describing the composition and friction and wear behaviors of aluminum oxide, silicon carbide, silicon nitride, and zirconia. It then compares and contrasts the microstructure, properties, and relative merits of cermets with those of cemented carbides.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.9781627083232
EISBN: 978-1-62708-323-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350183
EISBN: 978-1-62708-315-7
... nickel-phosphorus plating, ferritic nitrocarburizing, sulfurizing, and spark hardening Fig. 16 Compares the wear, scuffing, and spalling resistance of sheet-metal dies coated by the following surface-hardening processes: uncoated, nitrided, borided, nitrogen ion implanted, chrome plated, sulfurized...
Abstract
This chapter compares and contrasts surface-engineering processes based on process availability, corrosion and wear performance, distortion effects, penetration depth or attainable coating thickness, and cost. It provides both quantitative and qualitative information as well as measured property values.
1