Skip Nav Destination
Close Modal
Search Results for
solution heat treating
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 621 Search Results for
solution heat treating
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240487
EISBN: 978-1-62708-251-8
.... This chapter examines the metallurgy, composition, processing, and mechanical properties of aluminum and its alloys, both cast and wrought forms. It also covers heat treating and basic temper designations, including annealed, work hardened, solution heat treated, and solution heated treated and aged...
Abstract
Aluminum has many outstanding properties, leading it to be used for a wide range of applications. It offers excellent strength-to-weight ratio, good corrosion and oxidation resistance, high electrical and thermal conductivity, exceptional formability, and relatively low cost. This chapter examines the metallurgy, composition, processing, and mechanical properties of aluminum and its alloys, both cast and wrought forms. It also covers heat treating and basic temper designations, including annealed, work hardened, solution heat treated, and solution heated treated and aged. The chapter concludes with information on corrosion and oxidation resistance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240135
EISBN: 978-1-62708-251-8
..., which takes place during heat treatment; and true dispersion hardening, which can be achieved by mechanical alloying and powder metallurgy consolidation. It provides information on the three steps of precipitation hardening of aluminum alloys: solution heat treating, rapid quenching, and aging...
Abstract
Precipitation hardening is used extensively to strengthen aluminum alloys, magnesium alloys, nickel-base superalloys, beryllium-copper alloys, and precipitation-hardening stainless steels. This chapter discusses two types of particle strengthening: precipitation hardening, which takes place during heat treatment; and true dispersion hardening, which can be achieved by mechanical alloying and powder metallurgy consolidation. It provides information on the three steps of precipitation hardening of aluminum alloys: solution heat treating, rapid quenching, and aging.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420339
EISBN: 978-1-62708-310-2
...: (1) solution heat treating, (2) rapid quenching, and then (3) aging at room or elevated temperature. In solution heat treating, the alloy is heated to a temperature that is high enough to put the soluble alloying elements in solution. After holding at the solution treating temperature for long...
Abstract
This chapter discusses the basic principles of precipitation hardening, an important strengthening mechanism in nonferrous alloys as well as stainless steel. It begins with a detailed review of the theory of precipitation hardening, then describes its application to aluminum alloys and nickel-base superalloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140061
EISBN: 978-1-62708-335-5
... in solution heat treatment, quenching, precipitation hardening, and annealing of aluminum alloys. The effects of these processes on dimensional stability and residual stresses are also discussed. Troubleshooting and diagnosis of heat treating problems are covered in the concluding section of the chapter...
Abstract
The metallurgy of aluminum and its alloys offers a range of opportunities for employing heat treatments to obtain desirable combinations of mechanical and physical properties such that castings meet defined temper requirements. This chapter discusses the processes involved in solution heat treatment, quenching, precipitation hardening, and annealing of aluminum alloys. The effects of these processes on dimensional stability and residual stresses are also discussed. Troubleshooting and diagnosis of heat treating problems are covered in the concluding section of the chapter.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.aacppa.t51140133
EISBN: 978-1-62708-335-5
... Fig. D1.60 High-temperature aging characteristics for aluminum alloy 242.0-T4, sand cast. Quenched in boiling water Fig. D1.61 High-temperature aging characteristics for aluminum alloy C355.0-T4, sand cast. Solution heat treated 15 h at 980 °F, quenched in water at 150 °F. 24 h interval...
Abstract
This data set presents aging response curves for a wide range of aluminum casting alloys. The aging response curves are of two types: room-temperature, or "natural," curves and artificial, or "high-temperature," curves. The curves in each group are presented in the numeric sequence of the casting alloy designation. The curves included are the results of measurements on individual lots considered representative of the respective alloys and tempers. The properties considered are yield strength, ultimate tensile strength, elongation, and Brinell hardness.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870265
EISBN: 978-1-62708-299-0
... digits. W, Solution Heat Treated This is an unstable temper applicable only to alloys whose strength naturally (spontaneously) changes at room temperature over a duration of months or even years after solution heat treatment. The designation is specific only when the period of natural aging...
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310351
EISBN: 978-1-62708-326-3
... treated to produce stable tempers other than F, O, or H T2 Annealed (cast products only) T3 Solution heat treated and cold-worked T4 Solution heat treated T5 Artificially aged only T6 Heat treated and artificially aged T7 Solution heat treated and stabilized T8 Solution heat...
Abstract
The term heat treatable alloys is used in reference to alloys that can be hardened by heat treatment, and this chapter briefly describes the major types of heat treatable nonferrous alloys. The discussion provides a general description of annealing cold-worked metals and describes some of the common nonferrous alloys that can be hardened through heat treatment. The nonferrous alloys covered include aluminum alloys, cobalt alloys, copper alloys, magnesium alloys, nickel alloys, and titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240509
EISBN: 978-1-62708-251-8
...-resistant composition. Finally, the fourth part, T6, denotes that the alloy is solution treated and artificially aged. The cold working (H) and heat treat (T) temper designations are essentially the same as those used for aluminum alloys. Since cast alloys are the most prevalent product forms, the most...
Abstract
Magnesium occupies the highest anodic position on the galvanic series and can be subject to severe corrosion. The corrosion problem is due to the impurity elements iron, nickel, and copper. However, the use of higher-purity magnesium alloys has led to corrosion resistance approaching that of some of the competing aluminum casting alloys. This chapter begins with a general overview of magnesium metallurgy and alloy designations and moves on to discuss in detail the nominal compositions, mechanical properties, heat treatment, fabrication, and corrosion protection of magnesium casting alloys and wrought magnesium alloys. It also discusses the nominal compositions, properties, and applications of commercially pure zinc, zinc casting alloys, and wrought zinc alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550033
EISBN: 978-1-62708-307-2
... products only H = Cold-worked, strain hardened W = Solution heat treated T = Heat treated; stable T1 = Cooled from an elevated-temperature shaping operation + natural age T2 = Cooled from an elevated-temperature shaping operation + cold worked + natural age T3 = Solution treated + cold...
Abstract
This chapter provides basic engineering information on aluminum alloys with an emphasis on their use in applications where weight is a significant design factor. It discusses the advantages and limitations of various types of aluminum along with their compositions, designations, and achievable strengths. It explains how some alloys are hardened through solution strengthening and cold working, while others are strengthened by precipitation hardening. It also describes production and fabrication processes such as melting, casting, rolling, forging, forming, extruding, heat treating, and joining, and includes a section on the causes and effects of corrosion and how they are typically controlled.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120143
EISBN: 978-1-62708-269-3
... Resistant Rng Ring Rod Rod RT Room temperature SA Solution annealed Sand Sand cast Sec Section Sh Sheet Shp Shape SHT Solution heat treated ST Solution treated or Specials total Sint Sintered SMAW Shielded Metal Arc Welding Smls Seamless Sol Solution...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180029
EISBN: 978-1-62708-256-3
... to the H1000 condition. The first step in this process is to solution heat treat the part at approximately 830 °C (1525 °F), then quench in oil. The second step is to precipitation age the part at 540 °C (1000 °F) for four hours. The part in question was used to hold a large ISS assembly in the Space Shuttle’s...
Abstract
Many companies conduct only metallurgical evaluations in the wake of failures, discovering nothing more than the physical mechanism by which the failure occurred. The origin of failures, however, is often complex, involving not only physical mechanisms, but also human behavior and latent factors. Failures may also involve multiple parts, entire machines, or processes of any size and shape. The chapter examines the unique aspects of many failures and explains how they can sometimes be traced to systemic issues. It also covers the reasons why products fail, including improper service or operation, improper maintenance, improper testing, assembly errors, fabrication or manufacturing errors, and design errors. The case of the Tacoma Narrows Bridge collapse is presented to illustrate the consequence of overlooked factors, in this case, wind dynamics, and the importance of identifying root causes to prevent repeat failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.t68410247
EISBN: 978-1-62708-280-8
... capability among all the alternative casting processes, with the exception of investment casting. Net-shape castings intended to eliminate machining have to contend with potential distortion due to water quenching, especially if they are solution heat treated. System and component crashworthiness...
Abstract
This chapter presents guidelines for product designers to choose the best process and alloys while designing a casting. The discussion covers some of the factors pertinent to the selection of the best process for the product function and performance, namely geometric factors, mechanical properties, tooling cost per piece, and overall cost factors. The chapter contains tables listing several markets, products, popular processes, and common alloys and the common processes used for a variety of markets and products.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170432
EISBN: 978-1-62708-297-6
... Solution heat treated (unstable temper) Subdivisions of H H1, plus one or more digits Strain-hardened only H2, plus one or more digits Strain-hardened and then partially annealed H3, plus one or more digits Strain-hardened and then stabilized Subdivisions of T T1 Cooled...
Abstract
This article examines the composition and properties of magnesium and its alloys. It discusses alloy and temper designations, applications and product forms, and commercial alloy systems, and explains how alloying elements affect physical and mechanical properties, processing characteristics, and corrosion behaviors.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060333
EISBN: 978-1-62708-261-7
... and the most versatile of the three types of titanium alloys. A wide range of strength levels can be obtained in α-β or the β alloys by solution treating and aging. Phase compositions, sizes, and distributions can be manipulated by heat treatment within certain limits to enhance a specific property...
Abstract
Nonferrous alloys are heat treated for a variety of reasons. Heat treating can reduce internal stresses, redistribute alloying elements, promote grain formation and growth, produce new phases, and alter surface chemistry. This chapter describes heat treatment processes and how nonferrous alloys respond to them. It provides information on aluminum, cobalt, copper, magnesium, nickel, and titanium alloys and their composition, microstructure, properties, and processing characteristics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280135
EISBN: 978-1-62708-267-9
... Heating/Cooling Rates and Cast Superalloys Solution Treating Combined with Brazing Alternate Heat Treatments for Specific Properties All superalloys, whether precipitation hardened or not, generally require the application of heat for some period of time for purposes of preparing solid material...
Abstract
All superalloys, whether precipitation hardened or not, are heated at some point in their production for a subsequent processing step or, as needed, to alter their microstructure. This chapter discusses the changes that occur in superalloys during heat treatment and the many reasons such changes are required. It describes several types of treatments, including stress relieving, in-process annealing, full annealing, solution annealing, coating diffusion, and precipitation hardening. It discusses the temperatures, holding times, and heating and cooling rates necessary to achieve the desired objectives of quenching, annealing, and aging along with the associated risks of surface damage caused by oxidation, carbon pickup, alloy depletion, intergranular attack, and environmental contaminants. It also discusses heat treatment atmospheres, furnace and fixturing requirements, and practical considerations, including heating and cooling rates for wrought and cast superalloys and combined treatments such as solution annealing and vacuum brazing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550141
EISBN: 978-1-62708-307-2
... International X1, not registered with ASTM International F, as-fabricated O, annealed H10 and H11, slightly strain hardened H23, H24, and H26, strain hardened and partially annealed T4, solution heat treated T5, artificially aged only T6, solution heat treated and artificially...
Abstract
Magnesium, by volume, is two-thirds the weight of aluminum and one-quarter the weight of steel. It also has good damping capacity, giving it an edge over other metals in high-vibration environments. This chapter discusses the basic metallurgy, alloy designations, compositions, and mechanical properties of cast and wrought magnesium alloys. It also describes the processes used to produce magnesium parts, the causes and effects of corrosion, and the use of protective coatings and treatments.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090349
EISBN: 978-1-62708-266-2
... (a) T, tension; C, compression Solution heat treatment is used for shop welds. It eliminates weld sensitization, residual stresses, and the effects of machining and grinding. At present, approximately 40% of the welds in recirculation piping systems are solution heat treated. In this process...
Abstract
This chapter examines the stress-corrosion cracking (SCC) failure of stainless steel pipe welds in boiling water reactor (BWR) service. It explains where most of the failures have occurred and provides relevant details about the materials of construction, fabrication techniques, environmental factors, and cracking characteristics. It includes a model that accounts for the primary factors involved in intergranular SCC, namely, tensile stresses above the yield stress of the base material, a sensitized microstructure, and reactor cooling water. The chapter also provides proven remedies and mitigation techniques corresponding to a wide range of issues related to stress, sensitization, and operating conditions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740271
EISBN: 978-1-62708-308-9
...) for 24 h. Original magnification: 400×. Source: Ref 13 Fig. 27 Typical precipitation-hardening heat treatment for aluminum. Source: Ref 14 Fig. 30 Time-temperature profile for solution-treated and naturally aged alloys. Source: Ref 1 Fig. 31 Effects of T3 and T4 heat...
Abstract
This chapter discusses the processes used in manufacturing to thermally alter the properties of metals and alloys. It begins with a review of the iron-carbon system, the factors that affect hardenability, and the use of continuous cooling transformation diagrams. It then explains how various steels respond to heat treatments, such as annealing, normalizing, spheroidizing, tempering, and direct and interrupted quenching, and surface-hardening processes, such as flame and induction hardening, carburizing, nitriding, and carbonitriding. It also addresses the issue of temper embrittlement and discusses the effect of precipitation hardening on aluminum and other alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240527
EISBN: 978-1-62708-251-8
.... Retained beta is observed at some alpha-alpha boundaries and triple points. Solution treating and aging is not commonly used for Ti-6Al-4V ( Fig. 28.12e ) but is the standard heat treatment for aerospace fasteners. The effects of beta forging, as compared to conventional alpha-beta processing...
Abstract
Titanium alloys are classified according to the amount of alpha and beta phase material retained in their structures at room temperature. This chapter discusses the metallurgy, composition, processing, and properties of titanium and its alloys. It provides information on melting, forging, casting, heat treating, and secondary fabrication. It also discusses the advantages and disadvantages of titanium and its alloys in various applications.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400073
EISBN: 978-1-62708-316-4
... tin and some lithium compositions characterizing miscellaneous compositions 9 xxx: reserved for future use Basic Temper Designations F: as fabricated O: annealed H: strain hardened (wrought products only) W: heat treated T: solution heat treated Some of Commonly Used T...
Abstract
This chapter describes the formability and forming characteristics of low-carbon sheet steels, coated sheet steels, stainless steels, and aluminum and magnesium alloys. It provides property data as well as flow stress curves for numerous grades of each material and explains how composition, microstructure, and processing methods influence forming behaviors.