1-20 of 337 Search Results for

solidification cracking

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 September 2008
Fig. 19 Solidification cracking in weld metal More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130503
EISBN: 978-1-62708-284-6
... weldment. These include poor workmanship, a variety of hydrogen-assisted cracking failures, stress-corrosion cracking, fatigue, and solidification cracking in steel welds. Hydrogen-assisted cracking can appear in four common forms, namely underbead or delayed cracking, weld metal fisheyes, ferrite vein...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930071
EISBN: 978-1-62708-359-1
... temperature intervals specific to a given alloy. Colloquially, these four defect types are known as hot cracks, heat-affected zone (HAZ) microfissures, cold cracks, and lamellar tearing. Solidification Cracking (Hot Cracking) Hot cracks are solidification cracks that occur in the fusion zone near...
Image
Published: 01 September 2008
Fig. 20 Scanning electron micrograph of fracture surface showing solidification cracking More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290099
EISBN: 978-1-62708-306-5
..., and lamellar tearing. Solidification Cracking (Hot Cracking) Hot cracks are solidification cracks that occur in the fusion zone near the end of solidification. They result from the inability of the semisolid material to accommodate the thermal shrinkage strains associated with weld solidification...
Image
Published: 01 August 2018
Fig. 8.41 Proposed mechanism for the formation of hot cracks during solidification. Tensile stresses, if applied above the zero ductility temperature (TDZ) will cause separations and cracks. This temperature can be further reduced by impurity segregation, low melting eutectics, and so More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610585
EISBN: 978-1-62708-303-4
... (but not always) originate from the as-cast ingot due to shrinkage, voids, and porosity that form during solidification. For example, this is shown schematically in Fig. 3 for rolled bar that contains ingot porosity and pipe imperfections. These imperfections can serve as sites for crack initiation during...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930249
EISBN: 978-1-62708-359-1
... of the solidification mode. According to this theory, if the weld metal solidifies as ferrite first, with austenite appearing only in the latter stages of solidification, if at all, then the weld metal will be crack resistant. However, if the weld metal solidifies as austenite first, with ferrite only appearing...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930311
EISBN: 978-1-62708-359-1
...-phase mode of solidification (i.e., absence of low-melting-point eutectics), Ti-6Al-4V is also highly resistant to solidification- and liquation-related cracking. However, the occurrence of solid-state cracking and the formation of porosity can be encountered during welding. Fortunately, these defects...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220129
EISBN: 978-1-62708-259-4
..., macro- and microsegregation, and hot cracking, as well as the effects of solidification and remelting on castings, ingots, and continuous cast products. It explains how to determine where defects originate in continuous casters and how to control alumina, sulfide, and nitride inclusions...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930003
EISBN: 978-1-62708-359-1
... Abstract It is well established that solidification behavior in the fusion zone controls the size and shape of grains, the extent of segregation, and the distribution of inclusions and defects such as porosity and hot cracks. Since the properties and integrity of the weld metal depend...
Image
Published: 01 August 2018
morphology is similar to those observed in the solidification of austenitic castings with bad selection of chemical composition. (In this case, the weld metal composition was excessively changed by diluting the engineering steel in the lower part of the image, generating conditions favorable to cracking More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230253
EISBN: 978-1-62708-298-3
... Abstract This chapter provides an overview of beryllium casting practices and the challenges involved. It discusses the stages of solidification, the effect of cooling rate, the difficulty of heat removal, and the potential for hot cracking. It describes common melting techniques, including...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820013
EISBN: 978-1-62708-339-3
... Abstract Carbon and low-alloy steels are the most frequently welded metallic materials, and much of the welding metallurgy research has focused on this class of materials. Key metallurgical factors of interest include an understanding of the solidification of welds, microstructure of the weld...
Image
Published: 01 July 1997
Fig. 12 Relationship between soldification cracking susceptibility and Cr eq /Ni eq ratio. Boundary between cracking and no cracking at Cr eq /Ni eq = 1.5 corresponds to change in solidification mode from primary austenite below 1.5 to primary ferrite above 1.5. Source: Ref 17 More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130151
EISBN: 978-1-62708-284-6
... , should always be performed in order to avoid the stress concentration that can originate from cracks formed during casting solidification in the mold, during heat treatment, especially quenching and tempering, or even during heating for austenitization (Ref 2) . Fig. 1 Sharp edge elimination...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120065
EISBN: 978-1-62708-269-3
... of the alloy to produce a weld that is free of discontinuities or defects. Defects that may be encountered when welding titanium alloys include: Solidification segregation (macrosegregation and microsegregation) Solidification cracking Contamination cracking Hydrogen embrittlement Subsolidus...
Image
Published: 01 April 2013
Fig. 7 Band of shrinkage cavities and internal cracks in a 7075-T6 forging. The cracks developed from the cavities, which were produced during solidification of the ingot and which remained during forging because of inadequate cropping. Etched with Keller’s reagent. Original magnification 9 More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930329
EISBN: 978-1-62708-359-1
... zone: Effect of weld metal segregation on corrosion resistance Propensity to form porosity Solidification hot-crack sensitivity Alloying Segregation Because of the segregation of solute elements upon solidification (such as molybdenum, which segregates to the cellular dendritic...
Image
Published: 01 September 2008
Fig. 14 Fatigue striations in (a) interstitial-free steel and (b) aluminum alloy AA2024-T42. (c) Fatigue fracture surface of a cast aluminum alloy where a fatigue crack was nucleated from a casting defect, presenting solidification dendrites on the surface. Arrow at top right indicates fatigue More