Skip Nav Destination
Close Modal
Search Results for
solid solution strengthening
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 399
Search Results for solid solution strengthening
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 March 2012
Image
in Deformation, Strengthening, and Fracture of Ferritic Microstructures
> Steels: Processing, Structure, and Performance
Published: 01 January 2015
Fig. 11.17 Solid-solution strengthening of ferrite as a function of alloying element content in low-carbon steels. Source: Ref 11.28
More
Image
Published: 01 June 2008
Image
Published: 01 June 2008
Image
Published: 30 June 2023
Image
Published: 01 October 2012
Image
Published: 01 March 2002
Fig. 12.32 10,000 h rupture strength of selected wrought solid-solution-strengthened nickel-base superalloys vs. temperature. Note the inclusion of several stainless steels and MA-956 ODS iron-base superalloy for comparison.
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060049
EISBN: 978-1-62708-261-7
.... The strengthening mechanisms covered are solid-solution strengthening, cold working, and dispersion strengthening. The effect of grain size on the yield strength of a material is also discussed. cold working creep deformation dispersion strengthening elasticity plasticity solid-solution strengthening...
Abstract
This chapter introduces the concepts of mechanical properties and the various underlying metallurgical mechanisms that can be used to alter the strength of materials. The mechanical properties discussed include elasticity, plasticity, creep deformation, fatigue, toughness, and hardness. The strengthening mechanisms covered are solid-solution strengthening, cold working, and dispersion strengthening. The effect of grain size on the yield strength of a material is also discussed.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410213
EISBN: 978-1-62708-265-5
... on strength and toughness, continuous and discontinuous yielding behaviors, and dispersion and solid-solution strengthening processes. aging deformation ductile-to-brittle transition ferrite fracture microstructure strengthening AT SOME STAGE OF PROCESSING, the matrix microstructure of all...
Abstract
This chapter discusses the stress-strain response of ferritic microstructures and its influence on tensile deformation, strain hardening, and ductile fracture of carbon steels. It describes the ductile-to-brittle transition that occurs in bcc ferrite, the effects of aging and grain size on strength and toughness, continuous and discontinuous yielding behaviors, and dispersion and solid-solution strengthening processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340035
EISBN: 978-1-62708-427-7
... provides additional detail on the strengthening and softening mechanisms that allow aluminum alloys to attain a range of engineering properties. The strength of aluminum alloys can be controlled by three methods: solid-solution hardening by alloying, work hardening by plastic deformation, and precipitation...
Abstract
This chapter provides an overview of the alloy and temper designations adopted for aluminum cast and wrought products. It explains the naming system and how to identify the main alloying elements and basic strengthening mechanism from any given alloy and temper designation. The chapter provides additional detail on the strengthening and softening mechanisms that allow aluminum alloys to attain a range of engineering properties. The strength of aluminum alloys can be controlled by three methods: solid-solution hardening by alloying, work hardening by plastic deformation, and precipitation hardening with appropriate alloying and heat treatment.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240563
EISBN: 978-1-62708-251-8
... additions, with elements such as aluminum, titanium, and chromium reducing the density and elements such as tungsten, rhenium, and tantalum increasing it. The main strengthening mechanisms for nickel and iron-nickel superalloys are solid-solution hardening and precipitation hardening. In addition, grain...
Abstract
Superalloys are nickel, iron-nickel, and cobalt-base alloys designed for high-temperature applications, generally above 540 deg C. This chapter covers the metallurgy, composition, and properties of cast and wrought superalloys. It provides information on melting, heat treating, and secondary fabrication processes. It also covers coating technology, including aluminide diffusion and overlay coatings, and addresses the advantages and disadvantages of superalloys in various applications.
Image
in Stress-Corrosion Cracking of Nickel-Base Alloys[1]
> Stress-Corrosion Cracking: Materials Performance and Evaluation
Published: 01 January 2017
Fig. 5.10 Effect of stress intensity on SCC velocity of nickel alloys in concentrated aerated HCl at ambient temperature. Note that precipitation-hardened alloys crack, while solid-solution-strengthened alloys and pure nickel (Ni 201) resist cracking. Source: Ref 5.26
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240041
EISBN: 978-1-62708-251-8
... with alloying, the reduction is very moderate, and these alloys still have very good ductility. Fig. 3.1 Solid-solution strengthening for copper-nickel alloys When a metal is alloyed with another metal, either substitutional or interstitial solid solutions ( Fig. 3.2 ) are usually formed...
Abstract
When a metal is alloyed with another metal, either substitutional or interstitial solid solutions are usually formed. This chapter discusses the general characteristics of these solutions and the effects of several alloying elements on the yield strength of pure metals. It presents four rules that give a qualitative estimate of the ability of two metals to form substitutional solid solutions: relative size factor, chemical affinity factor, relative valency factor, and lattice type factor. The chapter provides information on alloys that form an ordered structure during heating. It describes the intermediate phases that are formed during solidification between the two extremes of substitutional solid solution on the one hand and intermetallic compound on the other. The chapter concludes with a section on strain aging in low-carbon steels that allows the interstitial atoms to diffuse to the dislocations and again form atmospheres that pin dislocation movement.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170540
EISBN: 978-1-62708-297-6
... response to stress), the solid-solution-strengthening effects of chromium, Cr, tungsten, W, and molybdenum, Mo, the formation of metal carbides, and the corrosion resistance imparted by chromium. Generally, the softer and tougher compositions are used for high-temperature applications, such as gas-turbine...
Abstract
This article discusses the properties, behaviors, and uses of cobalt and its alloys. It explains how cobalt alloys are categorized and describes the commercial designations and grades that are available. It also provides composition information and explains how alloying elements and carbides affect toughness, hardness, ductility, and strength as well as resistance to heat, corrosion, and wear.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2022
DOI: 10.31399/asm.tb.mbheaktmse.t56030021
EISBN: 978-1-62708-418-5
... solid-solution-strengthening effect. When the alloy is crystalline-structured, a large number of solid-solution atoms will block the dislocations, thereby forming a hard phase. High-entropy alloys have several components, and each element cooperates with diffusion, making it difficult for new phases...
Abstract
This chapter, presented in a question-and-answer format, covers many practical aspects of high-entropy alloys (HEAs). It provides clear and concise answers to more than 50 questions, imparting knowledge on alloying elements, heat treatments, diffusion mechanisms, phase formation, lattice distortion, crystal and grain structures, structure-property relationships, microstructure control, and characterization methods. It likewise explains how to calculate the effect of strengthening processes on the mechanical properties of HEAs and offers insights on how to balance strength, ductility, and density for specific applications. It also provides information on twinning behaviors, stacking faults, elastic properties, coating and film deposition methods, manufacturing challenges, and the use of computational techniques for alloy design.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170193
EISBN: 978-1-62708-297-6
... amounts of alloying elements such as copper and phosphorus for improved atmospheric corrosion resistance and solid-solution strengthening (see the article “ Carbon and Alloy Steels ”). Microalloyed ferrite-pearlite steels , which contain very small (generally, less than 0.10%) additions of strong...
Abstract
This article discusses the effect of alloying on high-strength low-alloy (HSLA) steels. It explains where HSLA steels fit in the continuum of commercial steels and describes the six general categories into which they are divided. It provides composition data for standard types or grades of HSLA steel along with information on available mill forms, key characteristics, and intended uses. The article explains how small amounts of alloying elements, particularly vanadium, niobium, and titanium, control not only the properties of HSLA steels, but also their manufacturability.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2022
DOI: 10.31399/asm.tb.mbheaktmse.9781627084185
EISBN: 978-1-62708-418-5
Image
Published: 01 March 2002
Fig. 9.15 Joint designs and dimensions for some specific configurations in SMAW of solid solution strengthened nickel- and iron-nickel-base superalloys Metal thickness, in. (mm) No. of passes Current (DCEP) (a) , A Electrode diameter (b) , in. (mm) Square-groove butt joints
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280025
EISBN: 978-1-62708-267-9
... from solid-solution hardeners and precipitated phases. Principal strengthening precipitate phases are γ′ and γ″, which are found in iron-nickel- and nickel-base superalloys. Carbides may provide limited strengthening directly (e.g., through dispersion hardening) or, more commonly, indirectly (e.g...
Abstract
This chapter describes the metallurgy of superalloys and the extent to which it can be controlled. It discusses the alloying elements, crystal structures, and processing sequences associated with more than a dozen phases that largely determine the characteristics of superalloys, including their properties, behaviors, and microstructure. It examines the role of more than 20 alloying elements, including phosphorus (promotes carbide precipitation), boron (improves creep properties), lanthanum (increases hot corrosion resistance), and carbon and tungsten which serve as matrix stabilizers. It explains how precipitates provide strength by impeding deformation under load. It also discusses the factors that influence grain size, shape, and orientation and how they can be controlled to optimize mechanical and physical properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170495
EISBN: 978-1-62708-297-6
... 725 and 625 PLUS and solid-solution strengthened alloy 625. As stated earlier in this article, alloy 718 (N07718) is another age-hardenable alloy that is highly corrosion resistant. Its high strength, corrosion resistance, and ease of weld fabrication have made alloy 718 the most popular...
Abstract
This article examines the role of alloying in the production and use of nickel and its alloys. It explains how nickel-base alloys are categorized and lists the most common grades along with their compositional ranges and corresponding UNS numbers. It describes the role of nearly 20 alloying elements and how they influence strength, ductility, hardness, and corrosion resistance. It also addresses processing issues, explaining how alloying and intermetallic phases affect forming, welding, and machining operations.
1