Skip Nav Destination
Close Modal
Search Results for
solid mechanics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 982 Search Results for
solid mechanics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540001
EISBN: 978-1-62708-309-6
... and loading conditions. elastic properties plastic deformation properties shear and torsion properties solid mechanics stress analysis ENGINEERING MATERIALS can be conveniently grouped into five categories: metals and alloys, intermetallics, ceramics and glasses, polymers (plastics...
Abstract
This chapter reviews the fundamentals of stress, strain, and deformation and demonstrates some of the tools and techniques used to analyze how materials and structures respond to tension, compression, bending, and shear. It begins with an overview of the behavior of perfectly elastic and plastic materials and viscous substances. It then describes the stress-strain response of two- and three-dimensional solids, explaining how to determine principle stresses and strains using Mohr’s circle and how to derive equivalent stress and strain using the von Mises relationship. It then goes on to analyze the stress state of load-bearing members, pressurized tubes, and pin-loaded lugs, accounting for the effect of geometric discontinuities, such as cutouts, fillets, and holes, as well as cracks. It also explains how finite element methods are used to solve problems involving complex geometric and loading conditions.
Image
Published: 30 November 2013
Fig. 10 Solid mechanics-type approach to describing stress and strain using a stress cube. (a) Expanded stress cube depicting normal (perpendicular to respective planes) stresses (σ) and strains (ε). (b) Schematic of a plate with a crack under mode I loading. The cylinder of material in front
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460067
EISBN: 978-1-62708-285-3
... Abstract The modeling and simulation activities in the field of high-pressure cold spray can be divided into two main parts: solid mechanics and fluid dynamics. This chapter focuses on these parts of modeling work in cold spray research. The discussion covers the objective, principal concepts...
Abstract
The modeling and simulation activities in the field of high-pressure cold spray can be divided into two main parts: solid mechanics and fluid dynamics. This chapter focuses on these parts of modeling work in cold spray research. The discussion covers the objective, principal concepts, methods, and outcome of modeling and simulation of particle impact and of in-flight history of particles in cold spraying. The concept of integration of particle impact and fluid flow modeling to optimize cold spray deposition for a given material is also explained.
Image
in Types of Wear and Erosion and Their Mechanisms
> Tribomaterials: Properties and Selection for Friction, Wear, and Erosion Applications
Published: 30 April 2021
Image
Published: 01 June 1983
Figure 4.5 Heat conduction mechanisms. The total conduction in solids is the sum of the above components. Types of material exhibiting each mode of conduction are indicated.
More
Image
in Physical, Chemical, and Thermal Analysis of Thermoplastic Resins[1]
> Characterization and Failure Analysis of Plastics
Published: 01 December 2003
Fig. 16 Dynamic mechanical properties of solids. (a) Torsion. (b) Tension. (c) Bending. (d) Compression
More
Image
in Effects of Composition, Processing, and Structure on Properties of Engineering Plastics[1]
> Characterization and Failure Analysis of Plastics
Published: 01 December 2003
Fig. 23 Mechanical models and typical behavior. (a) Ideal Hookean solid (σ = E ε; spring model; elastic response). (b) Ideal viscous Newtonian liquid (σ = ηε; dashpot model). (c) Maxwell’s mechanical model for a viscoelastic material. (d) Voigt’s mechanical model for a viscoelastic material
More
Image
Published: 01 December 2001
Image
Published: 01 November 2010
Image
in Deformation and Fracture Mechanisms and Static Strength of Metals
> Mechanics and Mechanisms of Fracture<subtitle>An Introduction</subtitle>
Published: 01 August 2005
Fig. 2.87 Fracture mechanism map for an 80Ni-20Cr solid solution showing regions of fracture modes and lines of equal rupture life. Source: Ref 2.58
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2016
DOI: 10.31399/asm.tb.ascaam.t59190001
EISBN: 978-1-62708-296-9
... and massive particles of the silicon. At the next stage, these phases constitute the binary (αAl + Si) eutectic. The morphology of the particular crystals is formed during their growth from the liquid determined by solid-liquid (S-L) interface topography and thereby the mechanism of joining of atoms from...
Abstract
This chapter serves as a study and guide on the main phase constituents of cast aluminum-silicon alloys, alpha-Al solid solution and Si crystals. The first section focuses on the structure of Al-Si castings in the as-cast state, covering the morphology of the alpha-Al solid solution grains and the process by which they form. It describes how cooling rates, temperature gradients, and local concentrations influence the topology of the crystallization front, and how they play a role in determining the morphology and dispersion degree of the grains observed in cross sections of cast parts. It also describes the mechanism behind dendritic grain crystallization and how factors such as surface tension, capillary length, and lattice symmetry affect dendritic arm size and spacing. The section that follows examines the morphology of the silicon crystals that form in aluminum-silicon castings and its effect on properties and processing characteristics. It discusses the faceted nature of primary Si crystals and the modification techniques used to optimize their shape. It also describes the morphology of the (alpha-Al + Si) eutectic, which can be lamellar or rodlike in shape, and explains how it can be modified through temperature control or alloy additions to improve properties such as tensile strength and plasticity and reduce shrinkage.
Book Chapter
Book: Principles of Soldering
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2004
DOI: 10.31399/asm.tb.ps.t62440001
EISBN: 978-1-62708-352-2
... Abstract Soldering and brazing represent one of several types of methods for joining solid materials. These methods may be classified as mechanical fastening, adhesive bonding, soldering and brazing, welding, and solid-state joining. This chapter summarizes the principal characteristics...
Abstract
Soldering and brazing represent one of several types of methods for joining solid materials. These methods may be classified as mechanical fastening, adhesive bonding, soldering and brazing, welding, and solid-state joining. This chapter summarizes the principal characteristics of these joining methods. It presents a comparison between solders and brazes. Further details on pressure welding and diffusion bonding are also provided. Key parameters of soldering are discussed, including surface energy and surface tension, wetting and contact angle, fluid flow, filler spreading characteristics, surface roughness of components, dissolution of parent materials and intermetallic growth, significance of the joint gap, and the strength of metals. The chapter also examines the principal aspects related to the design and application of soldering processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060049
EISBN: 978-1-62708-261-7
.... The strengthening mechanisms covered are solid-solution strengthening, cold working, and dispersion strengthening. The effect of grain size on the yield strength of a material is also discussed. cold working creep deformation dispersion strengthening elasticity plasticity solid-solution strengthening...
Abstract
This chapter introduces the concepts of mechanical properties and the various underlying metallurgical mechanisms that can be used to alter the strength of materials. The mechanical properties discussed include elasticity, plasticity, creep deformation, fatigue, toughness, and hardness. The strengthening mechanisms covered are solid-solution strengthening, cold working, and dispersion strengthening. The effect of grain size on the yield strength of a material is also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290279
EISBN: 978-1-62708-306-5
... by mechanical fastening, adhesive bonding, and, for thermoplastic composites, welding; the making of glass-to-metal seals; and joining of oxide and nonoxide ceramics to themselves and to metals by solid-state processes and by brazing. The classification, types, applications, and the mechanism of each...
Abstract
This chapter reviews materials issues encountered in joining, including challenges involved in welding of dissimilar metal combinations; joining of plastics by mechanical fastening, solvent and adhesive bonding, and welding; joining of thermoset and thermoplastic composite materials by mechanical fastening, adhesive bonding, and, for thermoplastic composites, welding; the making of glass-to-metal seals; and joining of oxide and nonoxide ceramics to themselves and to metals by solid-state processes and by brazing. The classification, types, applications, and the mechanism of each of these methods are covered. The factors influencing joint integrity and the main considerations in welding dissimilar metal combinations are also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060013
EISBN: 978-1-62708-261-7
... structure of metals and their role in mechanical deformation, annealing, precipitation, and diffusion. It describes the concept of solid solutions and the effect of temperature on solubility and phase transformations. The chapter also discusses the formation of solidification structures, the use...
Abstract
This chapter introduces many of the key concepts on which metallurgy is based. It begins with an overview of the atomic nature of matter and the forces that link atoms together in crystal lattice structures. It discusses the types of imperfections (or defects) that occur in the crystal structure of metals and their role in mechanical deformation, annealing, precipitation, and diffusion. It describes the concept of solid solutions and the effect of temperature on solubility and phase transformations. The chapter also discusses the formation of solidification structures, the use of equilibrium phase diagrams, the role of enthalpy and Gibb’s free energy in chemical reactions, and a method for determining phase compositions along the solidus and liquidus lines.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2000
DOI: 10.31399/asm.tb.fec.t65940271
EISBN: 978-1-62708-302-7
... Abstract This chapter is a detailed study of the localized corrosion behavior of steel, copper, and aluminum alloys. It applies the basic principles of electrochemistry, as well as materials science and solid and fluid mechanics, to explain the causes and effects of pitting, crevice corrosion...
Abstract
This chapter is a detailed study of the localized corrosion behavior of steel, copper, and aluminum alloys. It applies the basic principles of electrochemistry, as well as materials science and solid and fluid mechanics, to explain the causes and effects of pitting, crevice corrosion, stress corrosion cracking, and corrosion fatigue. It describes the underlying mechanisms associated with each process and how they relate to the microstructure of the metal or alloy, the physical condition of the surface, and other factors such as the coupling of the metal to a dissimilar metal or surface film.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340035
EISBN: 978-1-62708-427-7
... provides additional detail on the strengthening and softening mechanisms that allow aluminum alloys to attain a range of engineering properties. The strength of aluminum alloys can be controlled by three methods: solid-solution hardening by alloying, work hardening by plastic deformation, and precipitation...
Abstract
This chapter provides an overview of the alloy and temper designations adopted for aluminum cast and wrought products. It explains the naming system and how to identify the main alloying elements and basic strengthening mechanism from any given alloy and temper designation. The chapter provides additional detail on the strengthening and softening mechanisms that allow aluminum alloys to attain a range of engineering properties. The strength of aluminum alloys can be controlled by three methods: solid-solution hardening by alloying, work hardening by plastic deformation, and precipitation hardening with appropriate alloying and heat treatment.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390241
EISBN: 978-1-62708-459-8
... – with increasing drawing speed, although improved lubrication at higher speeds may counterbalance this effect. Finite element analysis (FEA) has allowed the seamless consideration of both solid mechanics and heat transfer, but interface modeling (friction and heat transfer) are not seamlessly incorporated...
Abstract
Drawing is a bulk deformation process that involves significant surface generation and high pressures. This chapter provides an overview of the mechanics and tribology of wire, bar, tube, and shape drawing. It presents important equations for calculating stresses, forces, friction, heat, strain, and distortion for different tooling configurations and geometries. It explains how to select and apply lubricants based on drawing speed, die design, and other factors and how to maintain sufficient film thickness for hydrodynamic, mixed, and solid-film lubrication conditions. It also discusses the use of vibrating dies, the influence of surface finish and defects, and lubrication practices for specific materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060239
EISBN: 978-1-62708-355-3
... Abstract This chapter details low-temperature test procedures and equipment. It discusses the role temperature plays in the properties of typical engineering materials. The effect that lowering the temperature of a solid has on the mechanical properties of a material is summarized for three...
Abstract
This chapter details low-temperature test procedures and equipment. It discusses the role temperature plays in the properties of typical engineering materials. The effect that lowering the temperature of a solid has on the mechanical properties of a material is summarized for three principal groups of engineering materials: metals, ceramics, and polymers (including fiber-reinforced polymers). The chapter describes the factors that influence the selection of tensile testing procedures for low-temperature evaluation, along with a comparison of tensile and compression tests. It covers the parameters and standards related to low-temperature tensile testing. The chapter discusses the factors involved in controlling test temperature. Finally, the chapter discusses the safety issues concerning the use of cooled methanol, liquid-nitrogen, and liquid helium.