Skip Nav Destination
Close Modal
By
Hyunjoong Cho
Search Results for
slab method
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 125
Search Results for slab method
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 30 September 2023
Figure 8.4: The slab method of metal forming analysis. (a) A slab at a distance x from the exit, with thickness dx and height h ; (b) stresses acting on the slab upstream of the neutral point; (c) stresses acting downstream of the neutral point.
More
Image
Dividing layers for the modified slab analysis method [ Altan et al., 1996 ...
Available to PurchasePublished: 01 February 2005
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smff.t53400105
EISBN: 978-1-62708-316-4
... of key process parameters including the draw ratio, material properties, geometry, interface conditions, equipment operating speed, and tooling. It then walks through the steps involved in predicting stress, strain, and punch force using the slab method and finite element analysis and presents...
Abstract
This chapter provides a detailed analysis of the deep drawing process. It begins by explaining that different areas of the workpiece are subjected to different types of forces and loads, equating to five deformation zones. After describing the various zones, it discusses the effect of key process parameters including the draw ratio, material properties, geometry, interface conditions, equipment operating speed, and tooling. It then walks through the steps involved in predicting stress, strain, and punch force using the slab method and finite element analysis and presents the results of simulations conducted to assess the influence of blank diameter, thickness, and holding force as well as strain-hardening and strength coefficients. It also discusses the cause of defects in deep drawn rectangular cups and presents the case study of a deep drawn rectangular cup made from an aluminum blank.
Book Chapter
A Simplified Method to Estimate Forging Load in Impression-Die Forging
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040185
EISBN: 978-1-62708-300-3
... Abstract This chapter presents a relatively simple method for estimating forging loads and flow stresses. The method uses the slab analysis technique and accounts for material properties, friction and heat transfer, press ram speed, forging geometry, and billet and die temperatures. The chapter...
Abstract
This chapter presents a relatively simple method for estimating forging loads and flow stresses. The method uses the slab analysis technique and accounts for material properties, friction and heat transfer, press ram speed, forging geometry, and billet and die temperatures. The chapter demonstrates the use of the method and compares the results with measured values.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040091
EISBN: 978-1-62708-300-3
... Abstract There are numerous approximate methods, both analytical and numerical, for analyzing forging processes. None are perfect because of the assumptions made to simplify the mathematical approach, but all have merit. This chapter discusses the slab, upperbound, and finite element methods...
Abstract
There are numerous approximate methods, both analytical and numerical, for analyzing forging processes. None are perfect because of the assumptions made to simplify the mathematical approach, but all have merit. This chapter discusses the slab, upperbound, and finite element methods, covering basic principles, implementation, and advantages and disadvantages in various applications.
Book Chapter
Fundamentals of Process Control
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220143
EISBN: 978-1-62708-341-6
... Abstract This chapter discusses the selection, use, and integration of methods to control process variables in induction heating, including control of workpiece and processing temperature and materials handling systems. The discussion of temperature control includes a review of proportional...
Abstract
This chapter discusses the selection, use, and integration of methods to control process variables in induction heating, including control of workpiece and processing temperature and materials handling systems. The discussion of temperature control includes a review of proportional controllers and heat-regulating devices. Integration of control functions is illustrated with examples related to heating of steel slabs, surface hardening of steel parts, vacuum induction melting for casting operations, and process optimization for electric-demand control. Distributed control within larger manufacturing systems is discussed. The chapter also covers nondestructive techniques for process control and methods for process simulation.
Book Chapter
Melting, Casting, and Hot Processing
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310155
EISBN: 978-1-62708-286-0
..., and the molten pool is deeper. This deeper pool produces a grain structure between that of VAR and typical cast product, with commensurate intermediate segregation patterns. Casting Continuous slab, billet, and bloom casting have become the standard methods of making stainless steel primary products...
Abstract
This article discusses the steps in the primary processing of stainless steels: melting, refining, remelting, casting, and hot rolling. It provides information of the major categories of defects in hot rolled stainless steels, namely hot mill defects, inclusion-related defects, and hot ductility-related defects.
Book Chapter
Fundamentals of Extrusion
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 April 2025
DOI: 10.31399/asm.tb.aet2.t59420001
EISBN: 978-1-62708-487-1
.... Analysis of Extrusion Pressure Thomsen et al. ( Ref 1.7 ) have shown extrusion pressure analysis by using three different approaches, including the uniform energy method, slab analysis, and the slip-line field theory. Altan et al. ( Ref 1.13 ) have performed only a slab method analysis to determine...
Abstract
This chapter introduces basic extrusion concepts, including types, processes, mechanics, and the principal variables and their effects on extrusion. The chapter defines the two basic types of extrusion commonly used in the aluminum extrusion industry, direct and indirect. The chapter discusses the mechanics of extrusion including plastic deformation and metal flow, plastic strain and strain rate, extrusion pressure, and extrusion force. The principal variables of extrusion, including billet material flow stress, extrusion ratio, dead-metal zone semiangle, speed of deformation, and extrusion temperature are discussed.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040159
EISBN: 978-1-62708-300-3
... not allow the forging pressure to reach a high value, which may cause die breakage due to mechanical fatigue. To analyze stresses, “slab method of analysis” or process simulation using finite-element method (FEM)-based computer codes is generally used. The FEM approach is discussed later. By modifying...
Abstract
This chapter discusses the factors involved in the design of impression-die forging systems. It begins by presenting a flow chart illustrating the basic steps in the forging design process and a block diagram that shows how key forging variables are related. It then describes the requirements of various forging alloys, the influence of machine operating parameters, and production challenges related to lot tolerances and shape complexity. The chapter also covers the design of finisher dies, the prediction of forging stresses and loads, and the design of preform dies for steel, aluminum, and titanium alloys.
Book Chapter
Fundamentals of Extrusion
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260001
EISBN: 978-1-62708-336-2
.... The greater the billet length, the higher the extrusion pressure. Billet temperature remains within extrusion range; extrusion pressure remains fairly unaffected when extrusion speed is increased within normal limits. Analysis of Extrusion Pressure Slab Method In this section, the average...
Abstract
This chapter discusses the basic differences between direct and indirect extrusion, the application of plastic theory, the significance of strain and strain rate, friction, and pressure, and factors such as alloy flow stress and extrusion ratio, which influence the quality of material exiting the die and the amount of force required.
Book Chapter
Primary Mill Fabrication
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740001
EISBN: 978-1-62708-308-9
... or an electric arc furnace to produce steel that usually has a carbon content of less than 1 wt%. After the pig iron has been reduced to steel, it is cast into ingots or continuously cast into slabs. Cast steels are then hot worked to improve homogeneity, refine the as-cast microstructure, and fabricate desired...
Abstract
This chapter discusses the processes, procedures, and equipment used in the production of iron, steel, aluminum, and titanium alloys. It describes the design and operation of melting and refining furnaces, including blast furnaces, basic oxygen and electric arc furnaces, vacuum induction melting furnaces, and electroslag and vacuum arc remelting furnaces. It also covers casting, rolling, and annealing procedures and describes the basic steps in aluminum and titanium production.
Book Chapter
Cast-Weld Construction
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200158
EISBN: 978-1-62708-354-6
... Abstract This chapter presents the criteria, methods, and benefits of cast-weld construction. cast-weld parts steel castings welded parts welding processes Criteria and Methods for Cast-Weld Construction Four considerations make this method of construction attractive...
Abstract
This chapter presents the criteria, methods, and benefits of cast-weld construction.
Book Chapter
Direct Chill Ingot and Continuous Casting Processes
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340063
EISBN: 978-1-62708-427-7
... in the process are silicon (from dirt), iron (from banding), and titanium (from white pigment on beverage containers). There are no feasible methods to remove these elements from molten aluminum, meaning that the only way to recycle dirty, unsorted scrap is to dilute the contaminants with pure metal, raising...
Abstract
The manufacture of all aluminum wrought products begins with an ingot or a continuous strip solidified from the liquid state. During molten metal processing (MMP), aluminum undergoes a series of operations that are described in this chapter including melting and alloying, recycling, molten metal treatment, control of inclusions, ingot grain refinement, and direct chill (DC) or continuous casting.
Book Chapter
Overview of Iron and Steel Manufacturing
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320003
EISBN: 978-1-62708-332-4
... or for continuous casting. Figure 2.8 is a representation of two alternative methods for casting either billets or slabs. The left-hand side shows a system for casting ingots. Cast ingots are hydraulically stripped from the ingot mold and loaded into a reheating furnace. Heated billets are fed into a blooming...
Abstract
This chapter provides a brief overview of iron and steel manufacturing and the major equipment involved in the process as well as identifying where casting fits into the overall process. In addition, it provides an overview of cast iron manufacturing, including the processes involved in converting pig iron into cast iron and steel.
Book Chapter
Plain Carbon Steels
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240349
EISBN: 978-1-62708-251-8
... called pigs. 19.4 Steelmaking The two dominant steelmaking methods during the 20th century were the Bessemer and open-hearth processes. In the Bessemer process, developed in 1856, air was blown through molten pig iron to reduce the carbon and silicon contents to tolerable levels. In the open...
Abstract
This chapter discusses various processes involved in the production of steel from raw materials to finished mill products. The processes include hot rolling, cold rolling, forging, extruding, or drawing. The chapter provides a detailed description of two main furnaces used for making steel: the electric arc furnace and the basic oxygen furnace. It also provides information on the classification and specifications for various steels, namely, plain carbon steels, low-carbon steels, medium-carbon plain carbon steels, and high-carbon plain carbon steels. The chapter concludes with a general overview of the factors influencing corrosion in iron and steel and a brief discussion of corrosion-resistant coatings.
Book Chapter
Primary Processing Effects on Steel Microstructure and Properties
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410163
EISBN: 978-1-62708-265-5
..., for example, by forging of bars or cold rolling and annealing of hot-rolled strip. Superimposed on the diagram are the changes in casting that have developed over the last half century. The large size of ingots requires considerable breakdown hot work to produce intermediate products such as slabs, blooms...
Abstract
Inclusions and chemical segregation are factors in many process-induced failures involving steel parts. Inclusions are nonmetallic compounds introduced during production; segregation is a type of chemical partitioning that occurs during solidification. This chapter discusses the origins of segregation and inclusions and their effect on the mechanical properties and microstructure of steel. It explains how to identify various types of inclusions and characteristic segregation patterns, such as banding. It also describes the effect of hot work processing on solidification structure and the chemical variations produced by interdendritic segregation.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040211
EISBN: 978-1-62708-300-3
... with the deformed billet to the length of the die wall and is termed in percentage of die wall contact (%DWC). Slab method analysis is used to predict the forging load required, based on material properties and process geometries. The maximum tooling load, L, based on geometry and material properties is [ Altan...
Abstract
This chapter discusses the process of cold forging and its effect on various materials. It describes billet preparation and lubrication procedures, cold upsetting techniques, and the use of slab analysis for estimating cold forging loads. It likewise describes extrusion processes, explaining how to estimate friction and flow stress and predict extrusion loads and energy requirements. The chapter also discusses the tooling used in cold forging, the parameters affecting tool life, and the relative advantages of warm forging.
Book Chapter
Primary Working
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480207
EISBN: 978-1-62708-318-8
... refinement in the structure. This is especially useful if large-section billets are to be produced. An upsetting operation may also be used if slabs ranging from 1.2 to 1.5 m (47 to 60 in.) wide are required. This method produces greater widths than could be expected from straight forging of ingots...
Abstract
Most integrated titanium mills have primary working equipment designed specifically for titanium. This chapter describes the forging, rolling, and extruding equipment used to produce titanium mill products and sheds light on the corresponding process, structure, property relationships.
Book Chapter
Induction Heating Power Supplies
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220047
EISBN: 978-1-62708-341-6
...-frequency ac. It should also be emphasized that the method of rating power level for induction power supplies varies. For example, motor-generators are rated in kilowatts (rated current times rated voltage times power factor) at the output terminals of the generator. Because solid-state power...
Abstract
Besides the induction coil and workpiece, the induction generator (source of ac power) is probably the most important component of an overall induction heating system. Such equipment is typically rated in terms of its frequency and maximum output power (in kilowatts). This chapter addresses the selection of power supplies in terms of these two factors as well as the operational features of different types of sources. The six different types of power supplies for induction heating applications covered in this chapter are line-frequency supplies, frequency multipliers, motor-generators, solid-state (static) inverters, spark-gap converters, and radio-frequency power supplies. The chapter discusses the design and characteristics of each of the various types of power supplies.
Book Chapter
Solidification, Segregation, and Nonmetallic Inclusions
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220129
EISBN: 978-1-62708-259-4
... (or lines, in a plane section) are determined via chemical etching or an analytical method, the dendritic structure is more or less evident. Source: Ref 16 Fig. 8.34 Mapping of characteristic x-rays for elements manganese (varying from 1.3% to 1.6%) and phosphorus (from 0% to 0.03...
Abstract
Many of the structural characteristics of steel products are a result of changes that occur during solidification, particularly volume contractions and solute redistribution. This chapter discusses the solidification process and how it affects the quality and behaviors of steel. It explains how steel shrinks as it solidifies, causing issues such as pipe and voids, and how differences in the solubility of solid and liquid steel lead to compositional heterogeneities or segregation. It describes the dendritic nature of solidification, peritectic and eutectic reactions, microporosity, macro- and microsegregation, and hot cracking, as well as the effects of solidification and remelting on castings, ingots, and continuous cast products. It explains how to determine where defects originate in continuous casters and how to control alumina, sulfide, and nitride inclusions.
1