Skip Nav Destination
Close Modal
Search Results for
sintering densification
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 48 Search Results for
sintering densification
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290169
EISBN: 978-1-62708-319-5
... Abstract After shaping and first-stage binder removal, the component (with remaining backbone binder) is heated to the sintering temperature. Further heating induces densification, evident as dimensional shrinkage, pore rounding, and improved strength. This chapter begins with a discussion...
Abstract
After shaping and first-stage binder removal, the component (with remaining backbone binder) is heated to the sintering temperature. Further heating induces densification, evident as dimensional shrinkage, pore rounding, and improved strength. This chapter begins with a discussion on the events that are contributing to sintering densification, followed by a discussion on the driving forces, such as surface energy, and high-temperature atomic motion as well as the factors affecting these processes. The process of microstructure evolution in sintering is then described, followed by a discussion on the tools used for measuring bulk properties to monitor sintering and density. The effects of key parameters, such as particle size, oxygen content, sintering atmosphere, and peak temperature, on the sintered properties are discussed. Further, the chapter covers sintering cycles and sintering practices adopted as well as provides information on dimensional control and related concerns of sintering. Cost issues associated with sintering are finally covered.
Image
Published: 01 October 2012
Fig. 10.20 Progressive densification and grain growth at several stages of sintering. (a) Initial stage. (b) Intermediate stage. (c) Final stage. (d) Fracture surface. The fracture surface micrograph shows the desirable placement of spherical pores on grain boundaries in the final stage
More
Image
in Case Studies of Powder-Binder Processing Practices
> Binder and Polymer Assisted Powder Processing
Published: 30 April 2020
Fig. 10.38 Sintering time influence on densification for a slip cast 0.4 μm median particle size alumina, comparing a narrow and broad size distribution. At intermediate densities, the broad distribution improves sintering, but the two distributions converge to similar behavior at more than 95
More
Image
Published: 30 April 2020
Fig. 2.8 Cross-sectional view through a ferrous powder. The external view of the powder failed to detect this internal porosity. Dense particles are necessary for high properties because these internal pores are resistant to sintering densification. Courtesy of J. Marsden
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290201
EISBN: 978-1-62708-319-5
... any initial particle size effect. The estimated grain growth rate of 7 μm 3 /s means almost no measurable difference in grain structure (and sintering densification) late in sintering, independent of starting particle size. Even a 60 μm particle size, sintered at 1340 °C (2445 °F) for 60 min...
Abstract
This chapter provides details on powder-binder processing for three materials, namely precipitation-hardened 17-4 PH stainless steel, cemented carbides, and alumina. The types of powders, binders, feedstock, shaping processes, debinding, sintering cycles, compositions, microstructure, distortion, postsintering treatments, and mechanical properties are presented for each. The shaping options include powder-binder approaches such as binder jetting, injection molding, extrusion, slip and slurry casting, centrifugal casting, tape casting, and additive manufacturing. Sintering options are outlined with respect to attaining high final properties.
Image
Published: 30 April 2020
Fig. 8.3 Sintered density versus hold time for 42 μm titanium powder vacuum sintered at three temperatures. Faster rates of densification (steeper slopes) are associated with shorter times and higher temperatures.
More
Image
Published: 30 April 2020
Fig. 8.9 Two variants in the mathematical treatment of sintering. The upper drawing corresponds to surface transport mechanisms that reposition mass along the outer surface to form the sinter neck without densification. The lower drawing corresponds to bulk transport mechanisms that move mass
More
Image
in Case Studies of Powder-Binder Processing Practices
> Binder and Polymer Assisted Powder Processing
Published: 30 April 2020
Fig. 10.33 High-purity alumina is sintered with different dopants at increasing concentrations to show that densification improves with magnesia but is hindered with calcia. Source: Bae and Baik ( Ref 19 )
More
Image
Published: 30 April 2020
Fig. 8.4 Sintered density versus particle size for zinc sulfide heated in nitrogen for 120 min at 1000 °C (1830 °F), illustrating the improved densification associated with small powders. Source: Kim et al. ( Ref 1 )
More
Image
in Case Studies of Powder-Binder Processing Practices
> Binder and Polymer Assisted Powder Processing
Published: 30 April 2020
Fig. 10.1 Data showing sintered density versus hold time and peak temperature for 17-4 PH stainless steel. Over a peak temperature of 1320 °C (2410 °F), almost all densification occurs prior to the isothermal hold, corresponding to zero time.
More
Image
in Case Studies of Powder-Binder Processing Practices
> Binder and Polymer Assisted Powder Processing
Published: 30 April 2020
Fig. 10.28 Sintered density versus temperature for 10 °C/min (18 °F/min) heating using two median particle sizes. The smaller 0.2 μm powder shows lower-temperature densification, but after 60 min at peak temperature (1400 °C or 2550 °F), the two powders reach essentially the same density
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000039
EISBN: 978-1-62708-312-6
... interparticle friction and optimizes densification. Double Pressing-Double Sintering Double Pressing-Double Sintering is sometimes used to achieve high sintered densities. The first sintering is carried out at a relatively low temperature, which produces sufficient ductility for the second pressing...
Abstract
This chapter discusses the methods by which stainless steel powders are shaped and compacted prior to sintering, including rigid die compaction, metal injection molding, extrusion, and hot isostatic pressing. It explains where each process is used and how processing parameters, such as temperature and pressure, and powder characteristics, such as particle size and shape, influence the quality of manufactured parts. It describes the various stages of metal powder compaction, the role of lubricants, and how to account for dimensional changes in the design of tooling and process sequences.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230267
EISBN: 978-1-62708-298-3
... in consolidating normal-purity grades of beryllium is related to the oxide coating and contaminants, especially silicon. Silicon is a sintering aid that permits full densification of the hot pressed billets using hot pressing conditions. Sintering can be performed, but the properties of the sintered billets...
Abstract
Powder metallurgy plays a central role in the production of nearly all beryllium components. This chapter describes the primary steps in the powder metal process and the work that has been done to improve each one. It explains how beryllium powders are made and how they are consolidated prior to sintering. It also compares and contrasts the properties of beryllium products made using different methods and provides composition and particle size data on commercially available powders.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290111
EISBN: 978-1-62708-319-5
... shape, oversized for the anticipated sintering shrinkage. The combination of temperature-pressure and tool actions depends on the forming machine. Indeed, the success of each shaping approach critically depends on matching the forming conditions, tooling and tool motions, feedstock viscosity...
Abstract
The conversion of feedstock into a shape involves the application of heat and pressure, and possibly solvents. This chapter discusses the operating principle, advantages, limitations, and applications of such shaping processes, namely additive manufacturing, cold isostatic pressing, die compaction, extrusion, injection molding, slip casting, slurry processes, and tape casting. Information on equipment setup, requirements, and the various factors influencing these processes are described. In addition, the chapter provides information on novel approaches and processing costs applicable to these shaping processes.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130395
EISBN: 978-1-62708-284-6
... by diffusion of carbon from graphite in the powder mix. Densification of PM compacts can be achieved in sintering. The degree of densification depends on the sintering parameters and the alloys involved. Generally, higher sintering temperatures and longer sintering times promote densification of ferrous...
Abstract
This chapter reviews failure aspects of structural ferrous powder metallurgy (PM) parts, which form the bulk of the PM industry. The focus is on conventional PM technology of parts in the density range of 6 to 7.2 g/cc. The chapter briefly introduces the processing steps that are essential to understanding failure analysis of PM parts. This is followed by a section on case hardening of PM parts. The methods used for analyzing the failures are then discussed. Some case studies are given that illustrate different failures and the methods of prevention of these failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000223
EISBN: 978-1-62708-312-6
... of particles that are substantially noncrystalline acicular powder. A powder composed of needle in character. or sliverlike particles. angle of repose. The angular contour that a activated sintering. A sintering process during powder pile assumes. which the rate of sintering is increased, for example...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290251
EISBN: 978-1-62708-319-5
... is larger than the matrix particle size to improve strength. However, large fibers hinder sintering densification; thus, higher sintering temperatures or longer sintering times are employed to compensate for the retarded sintering with fiber additions. One idea is to employ fast isostatic pressing during...
Abstract
This chapter is intended to identify materials, processes, and designs that will lead to great advances in powder-binder forming technologies. It discusses some of the structures obtained through these advances in powder-binder technologies such as binder jetting and extrusion-based additive manufacturing, including bound-metal deposition and fused-filament fabrication: oxidation-resistant high-temperature alloys, anisotropic structures, submicrometer-scale structures, surface hard materials, and artist metallic clays. Some of the advances discussed include the developments in process involving plastics, emulsions, ceramics, and porous structures and foams. Improvements in the design processes have led to the development of functional structures, controlled porosity, and bioinspired structures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740373
EISBN: 978-1-62708-308-9
... Abstract This chapter covers the basic steps of the powder metallurgy process, including powder manufacture, powder blending, compacting, and sintering. It identifies important powder characteristics such as particle size, size distribution, particle shape, and purity. It compares and contrasts...
Abstract
This chapter covers the basic steps of the powder metallurgy process, including powder manufacture, powder blending, compacting, and sintering. It identifies important powder characteristics such as particle size, size distribution, particle shape, and purity. It compares and contrasts mechanical, chemical, electrochemical, and atomizing processes used in powder production, discusses powder treatments, and describes consolidation techniques along with secondary operations used to obtain special properties or improve dimensional precision. It also discusses common defects such as ejection cracks, density variations, and microlaminations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290001
EISBN: 978-1-62708-319-5
.... At such high temperatures, the particles bond and densify by atomic diffusion. Because of the densification, the component shrinks to approach full density. On cooling, the sintered component is then ready for finishing operations, such as heat treating, painting, electroplating, machining, or polishing...
Abstract
This chapter provides an introduction to powder processing of binders and polymers. It sets the context for the remainder of the book by providing an overview of the topics discussed in the subsequent chapters and by providing introduction to powder-binder fabrication and customization of feedstock and describing the challenges in component production. The chapter also summarizes alphabetically a few key concepts in powder-binder processing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250139
EISBN: 978-1-62708-345-4
... ... Cold densification (press, sinter, cold form, heat treat) 7.6–7.8 Cold forming improves fatigue and wear resistance Powder forging (press, sinter, forge, heat treat) 7.6–7.8+ Limited to spur, bevel, and face gears although trials with helical gears have been done ( Ref 2 ) Powder injection...
Abstract
Powder metallurgy (P/M) is a flexible metalworking process for the production of gears. The P/M process is capable of producing close tolerance gears with strengths to 1240 MPa at economical prices in higher volume quantities. This chapter discusses the capabilities, limitations, process advantages, forms, tolerances, design, tooling, performance, quality control, and inspection of P/M gear manufacture. In addition, it presents examples that illustrate the versatility of the P/M process for gear manufacture.