Skip Nav Destination
Close Modal
Search Results for
single-tooth overload test
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 27 Search Results for
single-tooth overload test
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250311
EISBN: 978-1-62708-345-4
..., namely dimensional, surface finish texture, metallurgical, and residual stress. The following section presents the tests that simulate gear action, namely the rolling contact fatigue test, the single-tooth fatigue test, the single-tooth single-overload test, and the single-tooth impact test. Finally...
Abstract
Mechanical tests are performed to evaluate the durability of gears under load. The chapter first discusses the processes involved in the computations of stress for test parameters of gear. Next, the chapter reviews the four areas of specimen characterization of a test program, namely dimensional, surface finish texture, metallurgical, and residual stress. The following section presents the tests that simulate gear action, namely the rolling contact fatigue test, the single-tooth fatigue test, the single-tooth single-overload test, and the single-tooth impact test. Finally, the chapter describes the test procedures for surface durability (pitting), root strength (bending), and scoring (or scuffing) testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320133
EISBN: 978-1-62708-347-8
... depths for alloy steel gears Diametral pitch (DP) of tooth Case depth mm in. 20 0.127–0.254 0.005–0.010 16 0.203–0.330 0.008–0.013 10 0.305–0.457 0.012–0.018 8 0.356–0.508 0.014–0.020 6 0.406–0.559 0.016–0.022 4 0.508–0.711 0.020–0.028 Nitriding Cycle Time...
Abstract
Nitriding is a case-hardening process used for alloy steel gears and is quite similar to case carburizing. Nitriding of gears can be done in either a gas or liquid medium containing nitrogen. This chapter discusses the processes involved in gas nitriding. It reviews the effects of white layer formation in nitrided gears and presents general recommendations for nitrided gears. The chapter describes the microstructure, overload and fatigue damage, bending-fatigue life, cost, and distortion of nitrided gears. Information on nitriding steels used in Europe and the applications of nitrided gears are also provided. The chapter presents case studies on successful nitriding of a gear and on the failure of nitrided gears used in a gearbox subjected to a load with wide fluctuations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250227
EISBN: 978-1-62708-345-4
... field illumination. (c) Nitride case with an increase in continuous grain boundary nitride; maximum acceptable for grades A and B tooth tip. Dark field illumination. (d) Nitride case with complete grain boundary nitrides; not acceptable for grades A or B. Dark field illumination Overload...
Abstract
Nitriding is a surface hardening heat treatment that introduces nitrogen into the surface of steel while it is in the ferritic condition. Gas nitriding using ammonia as the nitrogen-carrying species is the most commonly employed process and is emphasized in this chapter. Nitriding produces a wear- and fatigue-resistant surface on gear teeth and is used in applications where gears are not subjected to high shock loads or contact stress. It is useful for gears that need to maintain their surface hardness at elevated temperatures. Gears used in industrial, automotive, and aerospace applications are commonly nitrided. This chapter discusses the processes involved in gas, controlled, and ion nitriding.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250257
EISBN: 978-1-62708-345-4
... include both overload and bending fatigue types of failure. Lubricated-related failures include Hertzian fatigue (pitting), wear, and scuffing. In Ref 4 , gear failure modes were broken down into two groups: Failure modes on gear tooth flanks, including pitting, scuffing, and wear Failure...
Abstract
Gears can fail in many different ways, and except for an increase in noise level and vibration, there is often no indication of difficulty until total failure occurs. This chapter begins with the classification of gear failure modes, followed by sections discussing the characteristics of various fatigue failures. Then, it provides information on the modes of impact fractures, wear, scuffing, and stress rupture. Next, the chapter describes the causes of gear failures and discusses the processes involved in conducting the failure analysis. Finally, the chapter presents examples of gear failure analysis.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050001
EISBN: 978-1-62708-311-9
... process for contour hardening this gear was presented. Figure 1.1 shows the contour pattern produced at that time by Caterpillar. Caterpillar must be considered the early pioneer in the contour hardening of gear teeth. Fig. 1.1 Hardness survey (Rockwell C scale) of hardened tooth, sectioned...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250293
EISBN: 978-1-62708-345-4
... where very little power is involved. Worm Gears In a single-enveloping worm gear set, in which the worm is cylindrical in shape, several teeth may be in mesh at the same time, but only one tooth at a time is fully engaged. The point (or points) of contact in this type of gear set constitutes too...
Abstract
This chapter summarizes the various kinds of gear wear and failure and how gear life in service is estimated and discusses the kinds of flaws in material that may lead to premature gear fatigue failure. The topics covered are alignment, gear tooth, surface durability and breakage of gear tooth, life determined by contact stress and bending stress, analysis of gear tooth failure by breakage after pitting, and metallurgical flaws that reduce the life of gears. The chapter briefly reviews some components in the design and structure of each gear and/or gear train that must be considered in conjunction with the teeth to enhance fatigue life.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630117
EISBN: 978-1-62708-270-9
... gear, carburized and hardened to 60 HRC in the case. It can be seen that tooth A fractured first, for it has the largest fatigue area, originating in the fillet on the arrow side of the tooth. Gear teeth are carefully shaped cantilever beams and can be diagnosed in this way. Fracture of the first tooth...
Abstract
Fatigue fractures are generally considered the most serious type of fracture in machinery parts simply because fatigue fractures can and do occur in normal service, without excessive overloads, and under normal operating conditions. This chapter first discusses the three stages (initiation, propagation, and final rupture) of fatigue fracture followed by a discussion of its microscopic and macroscopic characteristics. The relationship between stress and strength in fatigue is explained. The next section provides information that may help the uninitiated to appreciate some of the problems of laboratory fatigue testing and of the fatigue process itself. Finally, information on types and statistical aspects of fatigue is provided along with examples.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250019
EISBN: 978-1-62708-345-4
...Abstract Abstract This chapter reviews the knowledge of the field of gear tribology and is intended for both gear designers and gear operators. Gear tooth failure modes are discussed with emphasis on lubrication-related failures. The chapter is concerned with gear tooth failures...
Abstract
This chapter reviews the knowledge of the field of gear tribology and is intended for both gear designers and gear operators. Gear tooth failure modes are discussed with emphasis on lubrication-related failures. The chapter is concerned with gear tooth failures that are influenced by friction, lubrication, and wear. Equations for calculating lubricant film thickness, which determines whether the gears operate in the boundary, elastohydrodynamic, or full-film lubrication range, are given. Also, given is an equation for Blok's flash temperature, which is used for predicting the risk of scuffing. In addition, recommendations for lubricant selection, viscosity, and method of application are discussed. The chapter discusses in greater detail the applications of oil lubricant. Finally, a case history demonstrates how the tribological principles discussed in the chapter can be applied practically to avoid gear failure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770135
EISBN: 978-1-62708-337-9
... for case depth (and quality) assessment, the case depth measurements must be at the locations specified by the designer. If no locations are specified, the primary test location must be at a critical area (for gear teeth this is near the lowest point of single tooth contact). If test pieces are employed...
Abstract
The design of case-hardened components is an iterative process, requiring the consideration of multiple interrelated factors. This chapter walks readers through the steps involved in selecting an appropriate material and assessing the influence of alloy composition and cooling rate on core properties including hardenability, microstructure, tensile and yield strength, ductility, toughness, and fatigue resistance. It likewise explains how carbon affects case hardenability, surface hardness, and case toughness and how case depth influences residual stresses and bending and contact fatigue. It also discusses the effect of quenching methods and addresses the issue of distortion.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130417
EISBN: 978-1-62708-284-6
...-by-tooth induction hardening of gear wheels. Source: Ref 19 Fig. 27 (a) Single-shot inductors used for both track (lobes) and shaft of this automotive component. The part is sectioned and acid etched to show the hardness pattern. All tracks are hardened at the same time using 250 kW/30 kHz...
Abstract
Induction heating, in most applications, is used to selectively heat only a portion of the workpiece that requires treatment. This chapter covers the basic principles, features, and metallurgical aspects of induction heating. The discussion includes the conditions required for induction heating and quenching, the use of magnetic flux concentrators to improve the efficiency of surface heating, and the quenching systems used for induction hardening. The discussion also provides information on time-temperature dependence in induction heating, workpiece distortion in induction surface hardening, residual stresses after induction surface hardening and finish grinding, and input and output control of steel for induction surface hardening of gears.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250039
EISBN: 978-1-62708-345-4
... important approach to the fatigue evaluation of carburized steels. An example of component testing is the bending fatigue testing of single teeth in gears ( Ref 11 ). Gears are fabricated, carburized, and mounted in a fixture so that one tooth at a time is subjected to cyclic loading. More recently...
Abstract
This chapter describes important requirements for ferrous and nonferrous alloys used for gears. Wrought surface-hardening and through-hardening carbon and alloy steels are the most widely used of all gear materials and are emphasized in this chapter. The processing characteristics of gear steels and the bending fatigue strength and properties of carburized steels are reviewed. In addition to wrought steels, the chapter provides information on the other iron-base alloys that are used for gears, namely cast carbon and alloy steels, gray and ductile cast irons, powder metallurgy irons and steels, stainless steels, and tool steels. In terms of nonferrous alloys, the chapter addresses copper-base alloys, die cast aluminum alloys, zinc alloys, and magnesium alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130111
EISBN: 978-1-62708-284-6
...Fracture mode identification chart Table 1 Fracture mode identification chart Method Instantaneous failure mode (a) Progressive failure mode (b) Ductile overload Brittle overload Fatigue Corrosion Wear Creep Visual, 1 to 50× (fracture surface) Necking or distortion...
Abstract
This chapter briefly outlines some of the basic aspects of failure analysis, describing some of the basic steps and major concerns in conducting a failure analysis. A brief review of failure types from fracture, distortion, wear-assisted failure, and environmentally assisted failure (corrosion) is also provided.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.9781627082563
EISBN: 978-1-62708-256-3
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610461
EISBN: 978-1-62708-303-4
... hardness near 60 HRC. (d) Cross section through a gear tooth showing subcase-origin fatigue cracks similar to those sketched in (a). The original fatigue cracks are those parallel to the surface below the dark etched case. When these cracks join, the cracks to the surface then complete removal of the large...
Abstract
This chapter discusses the causes and effects of wear along with prevention methods. It covers abrasive, erosive, erosion-corrosion, grinding, gouging, adhesive, and fretting wear. It also discusses various forms of contact-stress fatigue, including subsurface-origin fatigue, surface-origin fatigue, subcase-origin fatigue (spalling fatigue), and cavitation fatigue.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060385
EISBN: 978-1-62708-261-7
..., sliding, and combined effect Fig. 16.9 Crack origin subsurface in a gear tooth section due to rolling-contact fatigue. Progression was parallel to surface and inward away from surface. Not etched. Original magnification: 60× Fig. 16.10 Typical morphology of fatigue spall in rolling...
Abstract
Durability is a generic term used to describe the performance of a material or a component made from that material in a given application. In order to be durable, a material must resist failure by wear, corrosion, fracture, fatigue, deformation, and exposure to a range of service temperatures. This chapter covers several types of component and material failure associated with wear, temperature effects, and crack growth. It examines temperature-induced, brittle, ductile, and fatigue failures as well as failures due to abrasive, erosive, adhesive, and fretting wear and cavitation fatigue. It also discusses preventative measures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410499
EISBN: 978-1-62708-265-5
... , 1978 , p 1553 – 1560 10.1007/BF02661937 21.42 Van Thyne C. and Krauss G. , A Comparison of Single Tooth Bending Fatigue in Boron and Alloy Carburizing Steels , Carburizing, Processing, and Performance , Krauss G. , Ed., ASM International , 1989 , p 333 – 340 21.43...
Abstract
Mechanical components often require surface treatments to meet application demands. This chapter describes several surface hardening treatments for steel and their effect on microstructure, composition, and properties. It discusses flame hardening, induction heating, carburizing, nitriding, carbonitriding, and nitrocarburizing. The discussion on carburizing addresses several interrelated factors, including processing principles, alloying, surface oxidation, residual stresses, bending fatigue, contact fatigue, and fracture.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200007
EISBN: 978-1-62708-354-6
... weighing 314 lb is welded onto a bucket to hold the digger teeth. The nose to the left is cored and has a tolerance of ±.015 inches. One type of tooth, Figure 2-52 , is employed with three different bases for mounting on buckets of varied design. Fig. 2-50 Dipper bucket with removable cast steel...
Abstract
Steel castings are produced in thousands of designs for different applications. They fill needs in many industries, including transportation, construction machinery, earthmoving equipment, rolling mills, mining, oil and gas exploration, and power generation. This chapter touches upon the variety of applications for which steel castings can be supplied and the ranges of casting size and complexity. Photographs in this chapter provide an understanding of these applications, their size and complexity, and the types of cast steels produced.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770077
EISBN: 978-1-62708-337-9
... on Propagation of Fatigue Cracks in Carburised Cases of Toothed Elements , Heat Treatment ’84 , The Metals Society , p 39.1 – 39.9 9. Vasil’ev L.A. , Retained Austenite and Hardness of the Carburised Case on Steel 18Kh2N4VA after Quenching in Two Different Media , Met. Sci. Heat Treat. , Vol 14...
Abstract
This chapter addresses the issue of retained austenite in quenched carburized steels. It explains why retained austenite can be expected at the surface of case-hardened components, how to estimate the amount that will be present, and how to effectively stabilize or otherwise control it. It presents detailed images and data plots showing how retained austenite appears and how it influences hardness, tensile properties, residual stresses, fatigue and fracture behaviors, and wear resistance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770099
EISBN: 978-1-62708-337-9
... of distance from surface. Source: Ref 47 Fig. 5.28 Dendritic microsegregation in a fractured gear tooth.2× Fig. 5.29 Section through a forged sliding clutch hub. 0.8× Fig. 5.30 Microstructure of an air-cooled carburized bar end. 50× Fig. 5.27 Effect of homogenization...
Abstract
This chapter is a study of the microstructure of case-hardened steels. It explains what can be learned by examining grain size, microcracking, nonmetallic inclusions, and the effects of microsegregation. It identifies information-rich features, describing their ideal characteristics, the likely cause of variations observed, and their effect on mechanical properties and behaviors. The discussions throughout the chapter are aided by the use of images, diagrams, data plots, and tables.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900251
EISBN: 978-1-62708-358-4
... fracture, which because of its appearance is termed “fishscale” fracture. The lower toughness of high-speed steels that have coarsened discontinuously generally makes them unfit for cutting tool service. A tracing of discontinuous coarsening in T1 steel has been shown in Fig. 5-14 , where a single, very...
Abstract
High-speed tool steels have in common the ability to maintain high hardness at elevated temperatures. High speed steels are primarily used for cutting tools that generate heat during high-speed machining. They are designated as group M or group T steels in the AISI classification system, depending on whether the major alloying approach is based on molybdenum or tungsten. This chapter describes the effects of each of the alloying elements and carbon content on the processing, microstructures, and properties of high-speed steels. It discusses the processes involved in the solidification, hot work, annealing, austenitizing for hardening, and tempering of high-speed steels. It also discusses the processes involved in controlling grain size during austenitizing and reviews the characteristics of cooling transformations and other property changes in tempered high-speed steels. Information on multipoint cutting tools is provided. The chapter discusses the applications of high-speed tool steel and factors in selecting high-speed tool steels.