Skip Nav Destination
Close Modal
Search Results for
single-filament tensile strength tensile testing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 84 Search Results for
single-filament tensile strength tensile testing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060183
EISBN: 978-1-62708-355-3
... are also tested. These include single filaments and tows (untwisted bundles of continuous filaments). Single-Filament Tensile Strength Single-filament tensile strength can be determined using ASTM D 3379 ( Ref 1 ), which can be summarized as a random selection of single filaments made from...
Abstract
This chapter presents the fundamentals of tensile testing of fiber-reinforced polymer composites. Basic tensile testing of polymer composites is divided into lamina and laminate testing. The chapter focuses on tensile testing of laminates. It discusses the most common tensile test methods that have been standardized for fiber-reinforced composite materials. It also briefly reviews considerations in tensile testing of metal-matrix composites.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860095
EISBN: 978-1-62708-338-6
... of potential fiber strength to be attained in the laminate and is a reason that ASTM D 3379, which addressed tensile testing of a single filament, has been withdrawn. Resin Properties As mentioned previously, most value is derived in testing the fiber and the resin together, in the composite form. Many...
Abstract
The objective of mechanical testing of an engineered material is to provide data necessary for the analysis, design, and fabrication of structural components using the material. The testing of filament-wound composite materials offers unique challenges because of the special characteristics of composites. This chapter describes suitable static mechanical test techniques for characterizing laminated composite materials. The approach is to provide recommended techniques, based on consensus opinions of fabricators and users of filament-wound composites, and to survey available techniques that have been used successfully in the field. The chapter describes the effects of various factors on the properties of composite constituents, including fibers, resins, and unidirectional plies. Some aspects of specimen selection are also described. The chapter provides information on pressure bottles and tubular parts that have been developed as standard test specimens for combined load testing of composites.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780185
EISBN: 978-1-62708-281-5
...-term tensile test (ASTM D 638 and ISO 517) is one of the most widely used mechanical tests of plastics for determining mechanical properties such as tensile strength, yield strength, yield point, and elongation. The stress-strain curve from tension testing is also a convenient way to classify plastics...
Abstract
This article briefly introduces some commonly used methods of mechanical testing of plastics for determining mechanical properties, also describing the test methods and providing comparative data for the mechanical property tests. In addition, creep testing and dynamic mechanical analyses of viscoelastic plastics are briefly described. The discussion covers the most commonly used tests for impact performance, various types of hardness test for plastics, the fatigue strength of viscoelastic materials, and the tension testing of elastomers and fibers.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870373
EISBN: 978-1-62708-314-0
... Processing method Property Material Tensile strength, ksi Tensile modulus, msi Flexural strength, ksi Compression strength, ksi Filament winding 30–80 wt% glass roving-epoxy resin, variable angle 40–80 3.0–6.0 40–80 45–70 Pultrusion rod and bar 60–80 wt% glass roving only 60–100 4.5...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230163
EISBN: 978-1-62708-298-3
... produced approximately a 10% strength increase, with lower ductility in both tensile and bend tests below 205 to 315 °C (400 to 600 °F). Alloys containing up to 5 wt% Cu were evaluated after vacuum casting and hot rolling by Evans et al. [1968] . The study concluded that only moderate strength...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860151
EISBN: 978-1-62708-338-6
... (reinforcing elements, fill- ers, and composite matrix binder) differing burst strength. Hydraulic pressure required to in form or composition on a macroscale. The burst a vessel of given thickness. Commonly constituents retain their identities: They do not used in testing filament-wound composite dissolve...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.9781627083386
EISBN: 978-1-62708-338-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220403
EISBN: 978-1-62708-259-4
... produced via single-reduction cold work and continuous annealing. Temper T61 ASTM A623-11 (HR30TS 57-65); approximate values in tensile test: yield strength: 430 MPa (62 ksi); tensile strength: 470 MPa (68 ksi); elongation: 12%. Polygonal ferrite with globular cementite aligned in the matrix. Ferritic...
Abstract
With cold work, mechanical strength (measured either by yield strength or ultimate tensile strength) increases and ductility (measured by elongation, reduction of area, or fracture toughness) normally decreases. This chapter discusses the mechanisms that produce these changes and the factors that influence them. It explains how cold working increases dislocation density and how that affects the stress-strain characteristics of steel, particularly the onset of deformation. It describes the effects of deformation on ferrite, austenite, cementite, and pearlite, and how to optimize their microstructure for various applications through controlled deformation. It also provides information on subcritical annealing, the examination and control of texture, the use of optical microscopy to monitor the effects of recrystallization, and the effect of cold working on threaded fasteners, nails, and filaments used to manufacture cords.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550385
EISBN: 978-1-62708-307-2
... fiber, aramid absorbs moisture. Aramid composites exhibit a linear decrease of both tensile strength and modulus when tested at elevated temperatures in air. The effects of temperature and moisture on a Kevlar 49/epoxy woven cloth are shown in Fig. 8.19 . Aramid fiber has an equilibrium moisture...
Abstract
Polymer-matrix composites are among the lightest structural materials in use today. They are also highly resistant to corrosion and fatigue and their load-carrying capabilities, such as strength and stiffness, can be tailored for specific applications. This chapter discusses the primary advantages and disadvantages of polymer-matrix composites, how they are produced, and how they perform in different applications. It describes the construction of laminates, the fibers and resins used, and the methods by which they are combined. It explains how strength, modulus, toughness, and high-temperature and corrosion behaviors are determined by the orientation, shape, and spacing of fibers, the number of plies, resin properties, and consolidation and forming methods. The chapter also covers secondary fabrication processes, such as thermoforming, machining, and joining, as well as production equipment and product forms, and include guidelines for optimizing tradeoffs when selecting fibers, resins, and production techniques.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860081
EISBN: 978-1-62708-338-6
... that the off-axis winding also enhances tube stability and improves rota- tional properties. The same basic characteristics will be found on plots of tensile strength versus winding angles. 84 / Composite Filament Winding structure is governed by and is very reproduc- sure bottles are shown. The Extended Range...
Abstract
The technology of fabricating composite hardware and structures by filament winding has evolved empirically through the development and manufacturing of specific components. This chapter reviews areas of technology used in building composite parts and discusses the processes from which the current technology was derived. The discussion covers quality control requirements for composite fabrication technology and cleanliness standards in the workplace. It describes technology developed for specific components, including satellites struts, aircraft hydraulic cylinders, drill pipe, drive shafts, couplings, and cryogenic tubing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860413
EISBN: 978-1-62708-348-5
... without significant compressive or tensile forces normal to the plane. But another type of laminate shear does not exist in metals. This is interlaminar or horizontal shear and refers to the shear strength between adjacent plies in a layered laminate. Intralaminar or longitudinal shear is a basic...
Abstract
Composite systems for cryogenic applications are discussed in this chapter. This chapter emphasizes filamentary-reinforced composites because they are the most widely used composite materials. It begins with a discussion on the approach to designing and fabricating with low-pressure laminate composites. This is followed by a section providing an overview of the materials in modern cryogenic technology. Then, the chapter describes the effect of cryogenic temperatures on materials properties; it also introduces the various joining techniques developed for composite materials. The effects of radiation on the properties of the materials are covered as well as the processes involved in testing laminates at cryogenic temperatures. Finally, the chapter provides information available on concrete aggregate composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060239
EISBN: 978-1-62708-355-3
... for low-temperature applications are alumina, aramid, carbon, and glass. Typical product forms are high-pressure molded laminates (such as cotton/phenolics and G-10) and filament-wound or pultruded tubes, straps, and structures. Although the FRP composites have desirable tensile strength, other mechanical...
Abstract
This chapter details low-temperature test procedures and equipment. It discusses the role temperature plays in the properties of typical engineering materials. The effect that lowering the temperature of a solid has on the mechanical properties of a material is summarized for three principal groups of engineering materials: metals, ceramics, and polymers (including fiber-reinforced polymers). The chapter describes the factors that influence the selection of tensile testing procedures for low-temperature evaluation, along with a comparison of tensile and compression tests. It covers the parameters and standards related to low-temperature tensile testing. The chapter discusses the factors involved in controlling test temperature. Finally, the chapter discusses the safety issues concerning the use of cooled methanol, liquid-nitrogen, and liquid helium.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860237
EISBN: 978-1-62708-348-5
... strength defined above. The two important differences between the yield strength and the critical resolved shear strength are: the yield strength refers to polycrystalline aggregates rather than single crystals and the yield strength is a tensile strength rather than a resolved shear strength. The random...
Abstract
The mechanical properties of a material describe the relations between the stresses acting on the material and its resulting deformations. Stresses capable of producing permanent deformations, which remain after the stresses are removed, are considered in this chapter. The effects of cryogenic temperatures on the mechanical properties of metals and alloys are reviewed in this chapter; the effects on polymers and glasses are discussed briefly. The fundamental mechanisms controlling temperature-dependent mechanical behavior, phenomena encountered in low-temperature testing, and the mechanical properties of some representative engineering metals and alloys are described. Modifications of test procedures for low temperatures and sources of data are also included.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870325
EISBN: 978-1-62708-344-7
..., the point brought out here is that the method does force the predictions to realistic values at least in one region, and therefore probably over a reasonably wide range. Fig. 12.14 Application of method whereby ε′ f ≈ ε f and σ f ′ ≈ σ f are determined from tensile test and a single fatigue...
Abstract
This chapter discusses the effect of fatigue on polymers, ceramics, composites, and bone. It begins with a general comparison of polymers and metals, noting important differences in microstructure and cyclic loading response. It then presents the results of several studies that shed light on the fatigue behavior and crack growth mechanisms of common structural polymers and moves on from there to discuss the fatigue behavior of bone and how it compares to stable and cyclically softening metals. It also discusses the fatigue characteristics of engineered and composited ceramics and ceramic fiber-reinforced metal-matrix composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170308
EISBN: 978-1-62708-297-6
... alloys Fig. 5 Short-time tensile strengths of five tungsten-rhenium alloys Dispersion-Strengthened Alloys Thoriated tungsten was originally developed as a filament alloy for the lighting industry. The ThO 2 dispersion modifies the grain structure, resulting in extended filament life...
Abstract
This article discusses the role of alloying in the production and use of common refractory metals, including molybdenum, tungsten, niobium, tantalum, and rhenium. It provides an overview of each metal and its alloys, describing the compositions, properties, and processing characteristics as well as the effect of alloying elements. It also discusses strengthening mechanisms and, where appropriate, corrosion behavior.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870001
EISBN: 978-1-62708-314-0
... are chopped fibers and random mat ( Fig. 1.1b ). Continuous-fiber composites are often made into laminates by stacking single sheets of continuous fibers in different orientations to obtain the desired strength and stiffness properties with fiber volumes as high as 60 to 70 percent. Fibers produce high...
Abstract
This chapter covers the basic aspects of composite materials. It describes the arrangement, form, and function of their constituent materials and explains how they perform better in combination than on their own. It discusses the directional nature of isotropic, anisotropic, and orthotropic materials, the orientation of plies in unidirectional (lamina) and quasi-isotropic (laminate) lay-ups, and the dominant role of fibers in determining strength, stiffness, and other lamina properties. The chapter also compares the engineering attributes of composites with those of metals and includes application examples.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550325
EISBN: 978-1-62708-307-2
... affect impact and tensile strength, shrinkage, thermal expansion, and thermal conductivity. It examines the relationship between tensile modulus and temperature, provides thermal property data for selected plastics, and discusses the effect of chemical exposure, operating temperature, and residual stress...
Abstract
This chapter describes the molecular structures and chemical reactions associated with the production of thermoset and thermoplastic components. It compares and contrasts the mechanical properties of engineering plastics with those of metals, and explains how fillers and reinforcements affect impact and tensile strength, shrinkage, thermal expansion, and thermal conductivity. It examines the relationship between tensile modulus and temperature, provides thermal property data for selected plastics, and discusses the effect of chemical exposure, operating temperature, and residual stress. The chapter also includes a section on the uses of thermoplastic and thermosetting resins and provides information on fabrication processes and fastening and joining methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340179
EISBN: 978-1-62708-427-7
... The mechanical properties , as described in Chapter 3 , depend on the microstructure created by the alloy and temper. Chapter 3 introduced the concepts of yield strength, tensile strength, and elongation that are derived from a tensile test. These basic properties are often the first step in choosing an alloy...
Abstract
This chapter describes the attributes of aluminum products that are critical for key structural applications. It covers the selection criteria and evaluations performed by the aluminum supplier or customer: physical attributes, mechanical properties (tensile, fracture, and fatigue), and corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870489
EISBN: 978-1-62708-314-0
... composite products. E-glass is a low-cost, high-density, low-modulus fiber that has good corrosion resistance and good handling characteristics. S-2 glass was developed in response to the need for a higher-strength fiber for filament-wound pressure vessels and solid rocket motor casings. Although more...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860465
EISBN: 978-1-62708-348-5
... superconducting composite strand are illustrated in Fig. 13.21 . The strand is made up of many superconducting filaments embedded in a high-conductivity normal-metal matrix, such as copper or aluminum ( Fig. 13.1 ). As many as ten thousand or more superconducting filaments may be combined into a single strand...
Abstract
The chapter presents an overview of the properties and operational limits of superconductive materials, as well as techniques used to fabricate practical superconducting wires. It introduces six properties: critical temperature, critical magnetic field, critical current density, stability, ac loss, and mechanical characteristics; for each property, typical data are provided and the experimental methods used to measure it are briefly described. The properties of the superconducting composites are tied together in the chapter to summarize their effect on superconductor material selection and the geometrical design of superconducting composites. The chapter also contains a reference guide to composite-design factors with links to the relevant chapter sections where each design consideration is addressed.
1