Skip Nav Destination
Close Modal
Search Results for
silicate glass
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 88 Search Results for
silicate glass
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 August 2013
Fig. 1.11 Structure of a silicate glass consists of tetrahedra with silicon atoms in the centers and oxygen atoms on the corners. Source: Ref 1.2
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090341
EISBN: 978-1-62708-266-2
... is reached is unknown. Region 1B: A regime observed in binary alkali-silicate glasses, for example, Na 2 O-2SiO 2 ( Ref 14.4 ), in which wedging stresses produced by a reaction product at the crack tip add to the driving force Region II: A regime in which the rate-governing step is the diffusion...
Abstract
Glasses and ceramics are susceptible to stress-corrosion cracking (SCC), as are metals, but the underlying mechanisms differ in many ways. One of the major differences stems from the lack of active dislocation motion that, in metals, serves to arrest cracks by reducing stress concentrations at flaw tips. As a result, even relatively small flaws (20 to 50 μm in radius) can cause glasses and ceramics to fail. This chapter examines the propensity of flaws to grow in glass and ceramic materials exposed to different environments, especially water, at stresses well below those that would produce immediate failure. It describes crack growth mechanisms, explains how to measure crack growth rates and predict time to failure, and provides crack growth data for a number of materials and environments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730081
EISBN: 978-1-62708-283-9
... material to another. Silicate glasses cannot crystallize unless the cooling rates are extremely slow. On the other hand, extremely rapid cooling is required to prevent crystallization of metallic glasses. The basic structural units of silicate glasses are tetrahedra with Si+ 4 ions in the centers...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730001
EISBN: 978-1-62708-283-9
... as in a crystal. Often there is short-range order, so that each atom, ion, or molecule has nearly the same surroundings as others, but there is no repeating pattern over long distances. Glass and most plastics are amorphous. In silicate glasses, silicon atoms are surrounded by four oxygen atoms forming tetrahedra...
Abstract
This chapter discusses the foundational principles of materials science. It begins with a review of the periodic table and the fundamental particles, including atoms, ions, and molecules, that constitute matter. It also reviews the types of bonds that form between atoms and the relative levels of force they produce. It describes the difference between crystalline and noncrystalline or amorphous materials and discusses common crystal structures, including face-centered cubic, body-centered cubic, hexagonal close packed, and diamond cubic. It also describes the structure of sodium chloride and includes a list of structurally similar compounds.
Image
Published: 01 December 2006
Fig. 4.58 Dependence of the viscosity of glass lubricants on the temperature [ Sce 83 ] No. Type of glass Approximate composition Recommended temperature range, °C 1 Lead-borate 10 B 2 O 3 , 82 PbO, 5 SiO 2 3 Al 2 O 3 530 2 Borate … 870 3 Potassium-lead
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540297
EISBN: 978-1-62708-309-6
... toughness levels. Data obtained from C(T) specimens in room-temperature air, 50 Hz, R = 0.1. Source: Ref 7.4 Temperature, moisture, water, and water vapor always cause stress-corrosion cracking (SCC)-type crack growth and failure in ceramics and glasses. Impurities such as silicate glass...
Abstract
Structural and fracture mechanics-based tools for metals are believed to be applicable to nonmetals, as long as they are homogeneous and isotropic. This chapter discusses the essential aspects of the fatigue and fracture behaviors of nonmetallic materials with an emphasis on how they compare with metals. It begins by describing the fracture characteristics of ceramics and glasses along with typical properties and subcritical crack growth mechanisms. It then discusses the properties of engineering plastics and the factors affecting crack formation and growth, fracture toughness, fatigue life, and stress rupture failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730011
EISBN: 978-1-62708-283-9
... of polymers and complex silicates. There also are some metal compositions which freeze to glass structures if cooled fast enough. Most of the metal early compositions to form glasses included appreciable amounts of small atoms including phosphorus, silicon, beryllium, and germanium. Cooling rates of 10 3 K/s...
Abstract
Phases are distinct states of aggregation of matter and one of the primary leverage points for understanding and applying materials. This chapter discusses the phase nature of metals and alloys, the concept of solid solutions, and the use of phase diagrams. It also describes some of the metallurgical effects of freezing or solidification, including the segregation of solutes and the formation of metal glasses.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870573
EISBN: 978-1-62708-314-0
.... Carbon-carbon (C-C), carbon fiber reinforced plastic (CFRP), ceramic matrix composite (CMC), carbon-silicon carbide (C-SiC), glass-ceramic matrix composite (GCMC), metal matrix composite (MMC), silicon-aluminum-oxygen-nitrogen (SIALON) While reinforcements such as fibers, whiskers, or particles...
Abstract
This chapter discusses the types of fibers and matrix materials used in ceramic matrix composites and the role of interfacial coatings. It describes the methods used to produce ceramic composites, including powder processing, slurry infiltration and consolidation, polymer infiltration and pyrolysis, chemical vapor infiltration, directed metal oxidation, and liquid silicon infiltration.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350125
EISBN: 978-1-62708-315-7
... coating methods can be found in Ref 5 . Silicate Glasses Coatings prepared from glass powders, with or without additions of refractory compounds, have the greatest industrial usage of all ceramic coatings. Glass coatings are used for such applications as aircraft combustion chambers, turbines...
Abstract
This chapter discusses the use of coating methods and materials and their impact on corrosion and wear behaviors. It provides detailed engineering information on a wide range of processes, including organic, ceramic, and hot dip coating, metal plating and cladding, and the use of weld overlays, thermal spraying, and various deposition technologies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610327
EISBN: 978-1-62708-303-4
... the typical corrosion fatigue behavior in metals. Temperature, moisture, water, and water vapor always cause stress-corrosion cracking (SCC)-type crack growth and failure in ceramics. Impurities such as silicate glass in the grain boundaries and interfaces, compounded with nil crack tip plasticity...
Abstract
This chapter covers the fatigue and fracture behaviors of ceramics and polymers. It discusses the benefits of transformation toughening, the use of ceramic-matrix composites, fracture mechanisms, and the relationship between fatigue and subcritical crack growth. In regard to polymers, it covers general characteristics, viscoelastic properties, and static strength. It also discusses fatigue life, impact strength, fracture toughness, and stress-rupture behaviors as well as environmental effects such as plasticization, solvation, swelling, stress cracking, degradation, and surface embrittlement.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230093
EISBN: 978-1-62708-298-3
... this powder at higher temperature in air results in a weight gain such that the original powder must have been a mixture of metal and oxide. A mixture of oxide and nitride would be white. As a deoxidizing agent, beryllium readily reduces borates, silicates, and phosphates at red heat to form beryllium oxide...
Abstract
This chapter reviews the basic chemistry of beryllium metals and compounds, including beryllium hydroxide, beryllium carbonates, beryllium fluoride, and beryllium chloride. It discusses the uses as well as application challenges of various forms of beryllium and includes information on their chemical properties and reactions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780003
EISBN: 978-1-62708-281-5
... are stronger than the metallic bonds that hold metals together, but weaker than ionic bonds ( Table 2 ). In comparison to metals, intermetallics, and ceramics and glasses, polymers also have a very low coordination number (CN), which is defined as the number of cation/anion (i.e., positiveion/negative-ion...
Abstract
This introductory article describes the various aspects of chemical structure and composition that are important to an understanding of polymer properties and their eventual effect on the end-use performance of engineering plastics, namely thermoplastics and thermosets. The most important properties of polymers and the most significant influences of structure on those properties are covered. The article also includes some general information on the classification and naming of polymers and plastics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910301
EISBN: 978-1-62708-250-1
... 2 Summary of insulation materials properties Property Calcium silicate Glass fiber Mineral wool Cellular glass Pearlite-Silicate Water absorption, vol% 90 92 85–93 0.2 0.4 Compressive strength, psi 150 varies 10 100 90–110 Water vapor transmission Very high Very...
Abstract
The design process is the first and most important step in corrosion control. Major savings in operating costs are possible by anticipating corrosion problems so as to provide proper design for equipment before assembly or construction begins. This chapter describes the role of the design team in producing a successful final design, general considerations in corrosion-control design, and design details that accelerate corrosion. The details that must be considered when attempting to control corrosion by design include plant/site location, plant environment, component/assembly shape, fluid movement, surface preparation and coating procedures, and compatibility, insulation, and stress considerations. Design solutions for specific forms of corrosion, namely crevice corrosion, galvanic corrosion, erosion-corrosion, and stress-corrosion cracking, are then considered. A brief section is devoted to the discussion on corrosion allowance used for steel parts subject to uniform corrosion. Finally, the chapter describes the design considerations for using weathering steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290111
EISBN: 978-1-62708-319-5
... the rounded-triangular shape, with the expanded bottom foot, and integrated handle. The feedstock is a porcelain (silicate glass-ceramic) powder with a water-soluble polyethylene glycol binder. Water immersion is used to remove most of the binder prior to sintering, using a peak temperature of 1200 °C (2190...
Abstract
The conversion of feedstock into a shape involves the application of heat and pressure, and possibly solvents. This chapter discusses the operating principle, advantages, limitations, and applications of such shaping processes, namely additive manufacturing, cold isostatic pressing, die compaction, extrusion, injection molding, slip casting, slurry processes, and tape casting. Information on equipment setup, requirements, and the various factors influencing these processes are described. In addition, the chapter provides information on novel approaches and processing costs applicable to these shaping processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120085
EISBN: 978-1-62708-269-3
... of the titanium. They are silicate-base materials that deposit uniform, fusible films through solvent evaporation. These films form glassy barriers at treatment temperatures up to 8l5 °C (1500 °F) and are quite effective in reducing oxygen, hydrogen, and nitrogen contamination. Above about 815 °C (1500 °F), most...
Abstract
Cleaning procedures serve to remove scale, tarnish films, and other contaminants that form or are otherwise deposited on the surface of titanium during processing operations such as hot working and heat treatment. This chapter explains what makes titanium susceptible to the formation of scale and how it can be removed via belt grinding, abrasive blasting, and molten salt descaling baths. It also discusses the role of acid pickling, barrel finishing, polishing, and buffing as well as the use of chemical conversion coatings and protective platings.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860075
EISBN: 978-1-62708-348-5
... temperatures of glass-ceramics and glasses. Cryogenics 16 , 487 – 490 and 606 ( corrigendum ). 10.1016/0011-2275(76)90007-2 White G. K. , Birch J. A. , and Manghnani M. H. (1977) . Thermal properties of sodium silicate glasses at low temperatures. J. Non-Cryst. Solids 23...
Abstract
Specific heat and thermal expansion are closely related. Following a discussion on thermal expansion theory, methods of measurement techniques are presented along with their advantages and disadvantages. The results of the measurements are then summarized for three classes of materials: metallics, nonmetallics, and composites. Because predicting thermal expansion values for unmeasured or novel materials is useful, the chapter also describes the means of making educated guesses for low-temperature values. A short discussion on how thermal expansion data can be used is followed by a section describing where such data can be found.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230071
EISBN: 978-1-62708-298-3
... yielded glasses from which the beryllium was extracted by sulfuric acid leaching. Appreciable amounts of silica were also taken into solution. Silica dissolution was controlled by using intermediate quantities of CaCO 3 with the beryl. The beryllium became soluble in dilute acid, with no SiO 2 passing...
Abstract
This chapter describes some of the chemical processes that have been developed to extract beryllium from different types of ore. It covers the Kjellgren-Sawyer sulfate method, the Degussa method, Copaux-Kawecki fluoride extraction, solvent extraction, and leaching and settling. It also provides information on electrolytic extraction and the use of electrorefining.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910237
EISBN: 978-1-62708-250-1
... are chromates, nitrates, silicates, carbonates, phosphates, and arsenates (it should be noted that environmental concerns have significantly impacted on the use of chromates). Among the many organic inhibitors are amines, heterocyclic nitrogen compounds, sulfur compounds (such as thioethers, thioalcohols...
Abstract
All materials are susceptible to corrosion or some form of environmental degradation. Although no single material is suitable for all applications, usually there are a variety of materials that will perform satisfactorily in a given environment. The intent of this chapter is to review the corrosion behavior of the major classes of metals and alloys as well as some nonmetallic materials, describe typical corrosion applications, and present some unique weaknesses of various types of materials. It also aims to point out some unique material characteristics that may be important in material selection, and discuss, where appropriate, the characteristic forms of corrosion that attack specific materials. The materials addressed in this chapter include carbon steels, weathering steels, and alloy steels; nickel, copper, aluminum, titanium, lead, magnesium, tin, zirconium, tantalum, niobium, and cobalt and their alloys; polymers; and other nonmetallic materials, including rubber, carbon and graphite, and woods.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.9781627082839
EISBN: 978-1-62708-283-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200437
EISBN: 978-1-62708-354-6
... their oxides when heated with the latter, and small amounts of carbon greatly affect the properties of iron. Carbon B o i l . . . See Boil. Carbon Dioxide Process (Silicate Process, Schmidt-Philipp Process A process for hardening molds or cores in which carbon dioxide gas is blown through dry clay-free silica...
1