Skip Nav Destination
Close Modal
By
Omar Maluf, Luciana Sgarbi Rossino, Camilo Bento Carletti, Celso Roberto Ribeiro, Clever Ricardo Chinaglia ...
Search Results for
shrinkage cavities
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 174 Search Results for
shrinkage cavities
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 September 2008
Image
Published: 01 April 2013
Fig. 7 Band of shrinkage cavities and internal cracks in a 7075-T6 forging. The cracks developed from the cavities, which were produced during solidification of the ingot and which remained during forging because of inadequate cropping. Etched with Keller’s reagent. Original magnification 9
More
Image
Published: 01 December 1995
Image
Published: 01 September 2008
Fig. 10 Primary shrinkage cavity forming large voids of irregular shapes on the component surface. (a) Schematic drawing. (b) Shrinkage cavity compensated for riser
More
Image
in Solidification, Segregation, and Nonmetallic Inclusions
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Image
Published: 01 August 2018
Fig. 11.2 The effect of deformation on “cavities” present in the material. Hydrostatic compressive stresses (σ H ) are essential to cause the consolidation and elimination of “cavities” (pores, shrinkage cavity, etc.). Unfavorable stress states may even lead to rupture during forming. Source
More
Image
Published: 01 September 2008
Fig. 1 Sharp edge elimination. (a) Sharp corners create high strain concentration. (b) Exaggerated relief causes a shrinkage cavity. (c) Ideal relief
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130151
EISBN: 978-1-62708-284-6
.... (a) Sharp corners create high strain concentration. (b) Exaggerated relief causes a shrinkage cavity. (c) Ideal relief The risks will be reduced if steel with increased temperability is chosen, which requires a less severe quenching medium, such as oil or air. Other strategies in the design of cast...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200164
EISBN: 978-1-62708-354-6
... presents the factors that govern the space requirements for pattern storage. casting design casting molds dimensional tolerances pattern equipment shrinkage steel castings Introduction Pattern equipment is the tooling utilized to form the mold cavity of a casting. The pattern equipment...
Abstract
Pattern equipment is the tooling utilized to form the mold cavity of a casting. This chapter first discusses the following factors that should be considered for determining the type of pattern equipment: number of castings to be produced, mold processes to be employed, dimensional tolerances required, casting design, and pattern cost. It also discusses the factors that should be considered when engineering a pattern. The chapter then presents the types of materials used for pattern construction. It provides an overview of patternmaker's shrinkage allowance. Finally, the chapter presents the factors that govern the space requirements for pattern storage.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200115
EISBN: 978-1-62708-354-6
... of sufficient feed metal to compensate for volumetric contraction at the time of solidification is the cause of shrinkage cavities. These cavities form when extra feed metal is not provided and are found in sections of the casting that solidify late in the solidification process. Gross shrinkage results...
Abstract
This chapter explains various aspects of the foundry process that the design engineer should consider when designing steel castings. It discusses special feeding aids, such as tapers, padding, ribs, and chills that may be used by foundry personnel to promote directional solidification. The chapter addresses the design of castings to reduce the occurrence of internal shrinkage. It provides a detailed discussion on design considerations for molding, cleaning, machining, and function.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720365
EISBN: 978-1-62708-305-8
... on the assumption that the metal being processed is of a nominal and reasonably uniform composition. Ingot Pipe and Centerline Shrinkage A common imperfection in ingots is the shrinkage cavity, commonly known as pipe, often found in the upper portion of the ingot. Shrinkage occurs during freezing...
Abstract
In forgings of both ferrous and nonferrous metals, the flaws that most often occur are caused by conditions that exist in the ingot, by subsequent hot working of the ingot or the billet, and by hot or cold working during forging. The inspection methods most commonly used to detect these flaws include visual, magnetic particle, liquid penetrant, ultrasonic, eddy current, and radiographic inspection. This chapter provides a detailed discussion on the characteristics, process steps, applications, advantages, and limitations of these methods. It also describes the flaws caused by the forging operation and the principal factors that influence the selection of a nondestructive inspection method for forgings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740047
EISBN: 978-1-62708-308-9
... less space than the liquid; in other words, it will shrink in volume. Because this shrinkage occurs at the point of solidification, the volume deficit, which is called the shrinkage cavity, is found at the location of the last liquid to solidify. Figure 4 shows the formation of a shrinkage cavity...
Abstract
This chapter covers the practices and procedures used for shape casting metals and alloys. It begins with a review of the factors that influence solidification and contribute to the formation of casting defects. It then describes basic melting methods, including induction, cupola, crucible, and vacuum melting, and common casting techniques such as sand casting, plaster and shell casting, evaporative pattern casting, investment casting, permanent mold casting, cold and hot chamber die casting, squeeze casting, semisolid metal processing, and centrifugal casting.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780051
EISBN: 978-1-62708-281-5
... for shrinkage due to thermal contraction as the part cools. In injection molding for parts less than an inch in length, the tolerances can be expected to be in the ten thousandths of an inch. In the case of plastic optical lenses, tolerances down to micrometers or Angstrom units can be expected...
Abstract
To ensure the proper application of plastics, one must keep in mind three factors that determine the appropriate end-use: material selection, processing, and design. This article begins by providing information on various factors pertinent to the anticipated use conditions of the article to be designed. This is followed by a discussion on several stages necessary to define the geometry of plastic parts. Details on the strength of and cost estimation for plastic parts are then provided. The article ends with a section providing information on the structure, properties, processing, and end-use applications of plastics.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220129
EISBN: 978-1-62708-259-4
.... The aspect is typical of a rimmed steel ingot. Bubbles nucleate after the start of solidification and grow in the direction of solidification. No etching. In killed (fully deoxidized) steel there is no gas evolution during solidification. To avoid the presence of internal shrinkage cavities...
Abstract
Many of the structural characteristics of steel products are a result of changes that occur during solidification, particularly volume contractions and solute redistribution. This chapter discusses the solidification process and how it affects the quality and behaviors of steel. It explains how steel shrinks as it solidifies, causing issues such as pipe and voids, and how differences in the solubility of solid and liquid steel lead to compositional heterogeneities or segregation. It describes the dendritic nature of solidification, peritectic and eutectic reactions, microporosity, macro- and microsegregation, and hot cracking, as well as the effects of solidification and remelting on castings, ingots, and continuous cast products. It explains how to determine where defects originate in continuous casters and how to control alumina, sulfide, and nitride inclusions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000223
EISBN: 978-1-62708-312-6
... at the curing temperature. will initiate and propagate. ball mill. A machine in which powders are bridging. The formation of arched cavities or blended or mixed by ball milling. pores in a loose or compacted powder mass. ball milling. Grinding, blending, or mixing in a briquet(te). A self-sustaining mass...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280041
EISBN: 978-1-62708-267-9
.... At the end of the pour, exothermic compounds may be added to the top of the mold to insulate the top of the solidifying electrode and provide a degree of hot topping, where the molten metal will fill the shrinkage occurring upon solidification lower in the electrode. Fig. 4.7 Schematic of bottom-pour...
Abstract
This chapter discusses the melting and conversion of superalloys and the solidification challenges they present. Superalloys have high solute content which can lead to untreatable defects if they solidify too slowly. These defects, called freckles, are highly detrimental to fatigue life. The chapter explains how and why freckles form as well as how they can be prevented. It describes the criteria for selecting the proper melting method for specific alloys based on melt segregation and chemistry requirements. It compares standard processes, including electric arc furnace/argon oxygen decarburization melting, vacuum induction melting, vacuum arc remelting, and electroslag remelting. It also addresses related issues such as consumable remelt quality, control anomalies, melt pool characteristics, and melt-related defects, and includes a section that discusses the processes involved in converting cast ingots into mill products.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320217
EISBN: 978-1-62708-332-4
... with its shrinkage cavity is removed and recycled. Fig. 12.21 Concept of directional solidification In a well-designed casting, the wall thicknesses and configurations are engineered to achieve directional solidification to ensure high integrity, as shown in the sketch on the right side...
Abstract
Steel is broadly classified as plain-carbon steels, low-alloy steels, and high-alloy steels. This chapter begins by describing microconstituents of low- and medium-carbon steel, including bainite and martensite. This is followed by a section discussing the effect of alloying elements on steel. Then, it provides an overview of steel casting applications. Next, the chapter reviews engineering guidelines for steel castings and feeder design. The following section provides information on feeding aids. Further, the chapter describes the elements of gating systems for steel castings. It also describes the alloys, properties, applications, and engineering details of steel. Finally, the chapter explains defects in steel castings and presents guidelines for problem solving with examples.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630281
EISBN: 978-1-62708-270-9
... of a part. Each impingement of a shot makes a small indentation in the surface of the part, thereby inducing compressive residual stresses, which are usually intended to resist fatigue fracture or stresscorrosion cracking. shrinkage cavity. A void left in cast metals as a result of solidification shrinkage...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.t68410103
EISBN: 978-1-62708-280-8
.... The aspects impacted are: Dimensions of critical areas Drafts on surfaces and packaging constraints Number of slides or pull-back cores Tooling costs Runner and gating access needed for surface finish and porosity control Number of cavities nested in a die Size and capacity of the die...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430409
EISBN: 978-1-62708-253-2
... sound waves to detect surface and subsurface flaws, if any. Discontinuities such as cracks, fissures, flakes, laminations, shrinkage cavities, and pores can be detected using ultrasonic testing. This technique is also used for measuring the oxide scale thickness of high-temperature tubes. Advanced...
Abstract
The power generating industry has become proficient at predicting how long a component will last under a given set of operating conditions. This chapter explains how such predictions are made in the case of boiler tubes. It identifies critical damage mechanisms, progressive failure pathways, and relevant test and measurement procedures. It describes life assessment methods based on hardness, wall thickness, scale formation, microstructure, and creep. It also includes a case study on the determination of the residual life of a secondary superheater tube.
1