Skip Nav Destination
Close Modal
By
Praveen Sathiyamoorthi, Niraj Mohan Chawake
By
H. Assadi, F. Gärtner, T. Klassen
By
Hamaid Mahmood Khan, Ebubekir Koc
Search Results for
shock consolidation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 44
Search Results for shock consolidation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
How Does Powder Metallurgy Facilitate the Preparation of Intermetallics and High-Entropy Alloys?
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 September 2024
DOI: 10.31399/asm.tb.pmamfa.t59400191
EISBN: 978-1-62708-479-6
... strength phase evolution powder metallurgy shock consolidation POWDER METALLURGY (PM) has been a key player in the manufacturing sector since the 20th century, when PM principles played a significant role in fabricating tungsten filaments for incandescent lamps. Archaeological studies revealed...
Abstract
This chapter discusses the growing role of powder metallurgy in the production of intermetallic, Heusler, and high-entropy alloys. It reviews the challenges of producing these materials by conventional methods and the advantages of sinter-based PM techniques. It explains why PM processes are better suited for complex materials than casting and compares the properties of intermetallic, Heusler, and high-entropy alloys prepared by casting and powder-metal techniques.
Book Chapter
Ceramic Matrix Composites
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870573
EISBN: 978-1-62708-314-0
... Abstract This chapter discusses the types of fibers and matrix materials used in ceramic matrix composites and the role of interfacial coatings. It describes the methods used to produce ceramic composites, including powder processing, slurry infiltration and consolidation, polymer infiltration...
Abstract
This chapter discusses the types of fibers and matrix materials used in ceramic matrix composites and the role of interfacial coatings. It describes the methods used to produce ceramic composites, including powder processing, slurry infiltration and consolidation, polymer infiltration and pyrolysis, chemical vapor infiltration, directed metal oxidation, and liquid silicon infiltration.
Book Chapter
Cemented Carbides and Cermets
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170573
EISBN: 978-1-62708-297-6
... to facilitate consolidation) Powder consolidation (e.g., cold static pressing or cold isostatic pressing) Sintering or sintering plus hot isostatic pressing Finishing (e.g., grinding, electrical discharge machining, honing, and lapping) A more detailed account of the processing of cemented...
Abstract
This article discusses the applications, compositions, and properties of cemented carbides and cermets. It explains how alloying elements, grain size, and binder content influence the properties and behaviors of cemented carbides. It also discusses the properties of steel-bonded carbides, or cermets, the various grades available, and the types of applications for which they are suited.
Book Chapter
Ceramic-Matrix Composites
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550569
EISBN: 978-1-62708-307-2
... the coalescence of thermal shock-induced cracks into critical flaws, result in enhanced thermal shock resistance relative to the monolithic ceramic. Because of their superior properties and their relative ease of manufacture, whisker-toughened CMCs have had more commercial success to date than any...
Abstract
Ceramic-matrix composites possess many of the desirable qualities of monolithic ceramics, but are much tougher because of the reinforcements. This chapter explains how reinforcements are used in ceramic-matrix composites and how they alter energy-dissipating mechanisms and load-carrying behaviors. It compares the stress-strain curves for monolithic ceramics and ceramic-matrix composites, noting improvements afforded by the addition of reinforcements. It then goes on to discuss the key attributes, properties, and applications of discontinuously reinforced ceramic composites, continuous fiber ceramic composites, and carbon-carbon composites. It also describes a number of ceramic-matrix composite processing methods, including cold pressing and sintering, hot pressing, reaction bonding, directed metal oxidation, and liquid, vapor, and polymer infiltration.
Book Chapter
Metal-Matrix Composites
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550457
EISBN: 978-1-62708-307-2
... at low temperatures (as low as 650 to 675 °C, or 1200 to 1250 °F), which is much lower than the normal pouring temperature of 705 to 730 °C (1300 to 1350 °F) for the high-silicon (16 to 18 wt% Si) A390 alloy. These lower temperatures result in less thermal shock to the die and decreased die casting cycle...
Abstract
Metal-matrix composites can operate at higher temperatures than their base metal counterparts and, unlike polymer-matrix composites, are nonflammable, do not outgas in a vacuum, and resist attack by solvents and fuels. They can also be tailored to provide greater strength and stiffness, among other properties, in preferred directions and locations. This chapter discusses the processes and procedures used in the production of fiber-reinforced aluminum and titanium metal-matrix composites. It explains how the length and orientation of reinforcing fibers affect the properties and processing characteristics of both aluminum and titanium composites. It also provides information on fiber-metal laminates and the use of different matrix metals and reinforcing materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860065
EISBN: 978-1-62708-338-6
... system for improvement of the outside finish and consolidation of a filament-wound product ( Fig. 6.20 ). The female caul plate inner surface has the desired outer shape and surface condition for the filament-wound part. The caul plate is in thirds or half-segments of the part perimeter. An internal caul...
Abstract
This chapter addresses the hardware requirements for filament winding, from elementary processing equipment to more advanced systems. The chapter describes the equipment, defines how it is best used, and presents real-life examples. It describes a helical horizontal filament winding machine system and a vertical winding machine. The chapter provides information on in-plane (polar) winders and several types of creels, namely stationary and no twist, rotating, braking, and combinations thereof. Comprehensive descriptions of mandrel designs used in filament winding are presented in text and illustration. The chapter also reviews process control of filament winding parameters, including for some specialized winding processes and unique component types.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040020
EISBN: 978-1-62708-428-4
... Spray Technology in 2016. [ 1 ] Recent and Emerging Spray Processes Cold Spray Cold spray is a solid-state coating process that uses a high-speed gas jet to accelerate powder particles toward a substrate where particles plastically deform and consolidate upon impact. This technique...
Abstract
This article summarizes the results of work completed by the ASM Thermal Spray Society Advisory Committee to identify key research challenges and opportunities in the thermal spray field. It describes and prioritizes research priorities related to emerging process methods, thermal spray markets and applications, and process robustness, reliability, and economics.
Book Chapter
Plastics
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250077
EISBN: 978-1-62708-345-4
... designs Lower density (light weight and low inertia) Ability to dampen moderate shock and impact Ability to operate with minimal or no lubrication Low coefficient of friction Smooth, quiet operation Lower critical tolerances than with metal gears, due in part to their greater resilience...
Abstract
Plastic gears are continuing to displace metal gears in applications ranging from automotive components to office automation equipment. This chapter discusses the characteristics, classification, advantages, and disadvantages of plastics for gear applications. It provides a comparison between the properties of metals and plastics for designing gears. The chapter reviews some of the commonly used plastic materials for gear applications including thermoplastic and thermoset gear materials. The chapter also describes the processes involved in plastic gear manufacturing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230295
EISBN: 978-1-62708-298-3
... (even with substantial superheat), also makes it an unsuitable candidate for precision casting [ Marder et al. 1990 , Marder 1991 ]. 20.1 Powder Consolidation To overcome these problems, alternative methods have been developed for the manufacturing of beryllium. The vast majority...
Abstract
The vast majority of beryllium products are manufactured from blocks, forms, or billets of compacted powder that are machined or worked into shape. This chapter describes the metalworking processes used, including rolling, forming, forging, extrusion, drawing, and spinning. It covers the qualitative and quantitative aspects of each process and provides examples showing how they are implemented and the results that can be achieved. The chapter also discusses the issue of beryllium’s low formability and describes some of the advancements that have been made in near-net shape processing.
Book Chapter
Tool Materials
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240411
EISBN: 978-1-62708-251-8
... Abstract There is a fairly wide variety of different tool steels for different applications. The American Iron and Steel Institute (AISI) classification of tool steels includes seven major categories: water-hardening tool steels, shock-resisting tool steels, cold work tool steels, hot work tool...
Abstract
There is a fairly wide variety of different tool steels for different applications. The American Iron and Steel Institute (AISI) classification of tool steels includes seven major categories: water-hardening tool steels, shock-resisting tool steels, cold work tool steels, hot work tool steels, low-alloy special-purpose tool steels, mold tool steels, high-speed tool steels, and powder metallurgy tool steels. This chapter provides discusses the manufacturing process, composition, properties, types, and applications of these tool steels and other cutting tool materials, such as cemented carbides. It also describes the methods of applying coatings to cutting tools to improve tool life.
Book Chapter
Structural Ceramics
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550511
EISBN: 978-1-62708-307-2
..., and carbides. Classification of advanced ceramics Table 10.1 Classification of advanced ceramics Main function Properties required Applications (examples) Thermal High-temperature and thermal shock resistance, thermal conductivity (high or low, respectively) High-temperature components...
Abstract
Ceramics normally have high melting temperatures, excellent chemical stability and, due to the absence of conduction electrons, tend to be good electrical and thermal insulators. They are also inherently hard and brittle, and when loaded in tension, have almost no tolerance for flaws. This chapter describes the applications, properties, and behaviors of some of the more widely used structural ceramics, including alumina, aluminum titanate, silicon carbide, silicon nitride, zirconia, zirconia-toughened alumina (ZTA), magnesia-partially stabilized zirconia (Mg-PSZ), and yttria-tetragonal zirconia polycrystalline (Y-TZP). It also provides information on materials selection, design optimization, and joining methods, and covers every step of the ceramic production process.
Book Chapter
Refractory Metals
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240583
EISBN: 978-1-62708-251-8
..., processed into chemicals, and then into powders. The powders are consolidated into finished products or mill shapes and ingots for further processing. All processing must be conducted in either a vacuum or other protective atmosphere to prevent catastrophic oxidation. 31.1 Niobium Niobium, formerly...
Abstract
The refractory metals include niobium, tantalum, molybdenum, tungsten, and rhenium. These metals are considered refractory because of their high melting points, high-temperature mechanical stability, and resistance to softening at elevated temperatures. This article discusses the composition, properties, fabrication procedures, advantages and disadvantages, and applications of these refractory metals and their alloys. A comparison of some of the properties of the refractory metals with those of iron, copper, and aluminum is given in a table. The article concludes with a brief section on refractory metal protective coatings.
Book Chapter
Tool Steels
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170210
EISBN: 978-1-62708-297-6
... Abstract This article provides an overview of tool steels, discussing their composition, properties, and behaviors. It covers all types and classes of wrought and powder metal tool steels, including high-speed steels, hot and cold-work steels, shock-resisting steels, and mold steels...
Abstract
This article provides an overview of tool steels, discussing their composition, properties, and behaviors. It covers all types and classes of wrought and powder metal tool steels, including high-speed steels, hot and cold-work steels, shock-resisting steels, and mold steels. It explains how the properties of these steels are determined by alloying elements, such as tungsten, molybdenum, vanadium, manganese, and chromium, and the presence of alloy carbides. It describes the types of carbides that form and how they contribute to wear resistance, toughness, high-temperature strength, and other properties.
Book Chapter
Tool Steels and High-Speed Steels
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060273
EISBN: 978-1-62708-261-7
... 0.30 max 1.00–2.00 0.40 max … Shock-resisting steels S1 T41901 0.40–0.55 0.10–0.40 0.15–1.20 1.00–1.80 0.30 max 0.50 max 1.50–3.00 0.15–0.30 … S2 T41902 0.40–0.55 0.30–0.50 0.90–1.20 … 0.30 max 0.30–0.60 … 0.50 max … S5 T41905 0.50–0.65 0.60–1.00 1.75–2.25 0.50...
Abstract
Tool steels are a special class of alloys designed for tool and die applications. High-speed steels are a subset of tool steels designed to operate at high speeds. This chapter describes the composition, properties, heat treatment, and use of wrought and alloyed tool steels, high-speed steels, and their counterparts made by powder metallurgy. It includes information on the chemical composition and application range of many commercial tool steels and explains how to apply coatings that reduce friction, thermal conductivity, and wear.
Book Chapter
Modeling and Simulation of Cold Spray
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460067
EISBN: 978-1-62708-285-3
... number range. At relative velocities between gas and particle approaching or exceeding the local sound velocity, the drag coefficient becomes a function of the particle Mach number as well, M a p = | v − v p | / κ R T . In the case Ma p > 1, a shock forms in front...
Abstract
The modeling and simulation activities in the field of high-pressure cold spray can be divided into two main parts: solid mechanics and fluid dynamics. This chapter focuses on these parts of modeling work in cold spray research. The discussion covers the objective, principal concepts, methods, and outcome of modeling and simulation of particle impact and of in-flight history of particles in cold spraying. The concept of integration of particle impact and fluid flow modeling to optimize cold spray deposition for a given material is also explained.
Book Chapter
Selection Guidelines for Lightweight Materials
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550621
EISBN: 978-1-62708-307-2
... Thermal conductivity Medium to high Medium, but often decreases rapidly with temperature Very low Thermal shock resistance Good Generally poor … Electrical characteristics Conductors Insulators Insulators Chemical resistance Low to medium Excellent Good Oxidation resistance...
Abstract
This chapter consists of three parts. The first part provides data and guidelines for selecting materials and processing routes. It compares the basic properties of metals, ceramics, and polymers, identifies important measures of performance, and discusses manufacturing processes and their compatibility with specific materials. The chapter then presents general guidelines for selecting lightweight materials, and concludes with a review of lightweight metals, plastics, and composites used in automotive applications.
Book Chapter
Additive Manufacturing—History, Recent Developments, and Advancement
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 September 2024
DOI: 10.31399/asm.tb.pmamfa.t59400207
EISBN: 978-1-62708-479-6
... is also customizing insoles covering hard and soft contact areas with thermoplastic polyurethane (TPU) materials and 3D printing machines. EOS has also introduced TPU1301, providing great resilience after deformation, excellent shock absorption, and process stability. Recently developed Novamid AM1030...
Abstract
This chapter gives a brief review of the development of additive manufacturing (AM) and the appeal of different of different AM methods.
Book Chapter
Hot Working
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220353
EISBN: 978-1-62708-259-4
... time and temperature for the defect “healing” ( Fig. 11.2 ). Fig. 11.2 The effect of deformation on “cavities” present in the material. Hydrostatic compressive stresses (σ H ) are essential to cause the consolidation and elimination of “cavities” (pores, shrinkage cavity, etc.). Unfavorable...
Abstract
This chapter discusses the effects of hot working on the structure and properties of steel. It explains how working steels at high temperatures promotes diffusion, which helps close cavities and pores, and how it changes the shape and distribution of segregates, offsetting their effect. It describes the effect of hot working on nonmetallic inclusions and the many properties influenced by them. It discusses the recrystallization mechanism by which hot working produces microstructural changes and explains how to control it by adjusting temperature, degree of reduction, and cooling rates. It describes special cases of segregation, including banding and why it occurs, and the application of closed die forging. The chapter also presents several examples of hot working defects, including forging laps, cracks, and overheated or burned steel.
Book Chapter
Titanium Aluminide Intermetallics
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550299
EISBN: 978-1-62708-307-2
... include induction skull melting, vacuum arc melting, and plasma melting. Other methods under study include mechanical alloying, spray forming, shock reactive synthesis, physical vapor deposition, and hot pressing and rolling of elemental sheet into multilayer composite sheets. By appropriate...
Abstract
Titanium aluminides are lightweight materials that have relatively high melting points and good high-temperature strength. They also tend to be stronger and lighter than conventional titanium alloys, but considerably less ductile. This chapter begins with a review of the titanium-aluminum phase diagram, focusing on the properties, compositions, and microstructures of alpha-2 Ti3Al alloys. It then describes the properties, microstructures, and compositions of orthorhombic, gamma, and near-gamma alloys as well as the processing methods and procedures normally used in their production.
Book Chapter
Avoidance, Control, and Repair of Fatigue Damage
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870267
EISBN: 978-1-62708-344-7
... size interference fits laser shock peening low-plasticity burnishing materials selection nitriding proof loading strain concentration surface finish Introduction The most effective way to avoid fatigue is by attention to design details. All the preceding chapters are relevant...
Abstract
This chapter is largely a compendium of best practices and procedures for minimizing the effects of fatigue. It explains how to make products more resistant to fatigue by choosing the right materials and manufacturing processes, avoiding geometries and features that concentrate strains, preventing or removing surface damage, and by inducing compressive mean stresses that prolong fatigue life. It also discusses the use of property conditioning and restoration treatments, the benefits of interference fits and processes such as coaxing, the effects of assembly damage and operating overload, the importance of surface cleanliness and finish, and the role of inspection, testing, replacement, and repair in safe-life and fail-safe designs. Examples highlighting the benefits and potential pitfalls of proof loading tests are included as well.
1