Skip Nav Destination
Close Modal
Search Results for
shear failure
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 447 Search Results for
shear failure
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Deformation and Fracture Mechanisms and Static Strength of Metals
> Mechanics and Mechanisms of Fracture: An Introduction
Published: 01 August 2005
Fig. 2.20 Examples of uninterrupted shear failure. (a) Polycrystalline aluminum bars pulled at 600 °C (1110 °F). Source: Ref 2.6 . (b) Extended copper-aluminum single crystal. Source: Ref 2.6
More
Image
Published: 01 August 2012
Fig. 12.36 Failure modes in shear spinning. (a) Wrinkling. (b) Flaring. (c) Sufficient part. Source: Ref 12.26
More
Image
Published: 01 August 2005
Image
Published: 01 August 2005
Fig. 4.33 Effect of overlap length on the failure stress in shear for a simple lap joint between mild steel components joined using a silver-base braze [ Sloboda 1961 ]. For short overlaps, failure is by shear. As the overlap length increases, the forces in the joint change from shear to peel
More
Image
Published: 01 December 2003
Fig. 4 Hackles in the resin of a carbon/epoxy (AS4/3501-6) laminate, indicative of mode II shear failure. 480×
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870351
EISBN: 978-1-62708-314-0
..., with the bottom surface in tension and the top surface in compression. The maximum shear stress occurs at the center of the cross section. Since the stress varies through the cross section, failure can occur in tension, compression, shear, or some combination of these conditions. Although the three-point test...
Abstract
This chapter discusses composite testing procedures, including tension, compression, shear, flexure, and fracture toughness testing as well as adhesive shear, peel, and honeycomb flatwise tension testing. It also discusses specimen preparation, environmental conditioning, and data analysis.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780417
EISBN: 978-1-62708-281-5
... specimens; mode II shear and shear fatigue failures were obtained using end-notched flexural specimens. Translaminar tension and compression specimens used either the notched-bend bar specimens with four-point loading or the specimen configurations defined in ASTM D 3039, “Tensile Properties of Fiber-Resin...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870449
EISBN: 978-1-62708-314-0
... is necessary in order for the bolt loads to be carried effectively and shear-out failures to be thereby eliminated. Therefore, the emphasis of the following discussion will be on bearing and net tension failures. The various failure modes for composite joints are shown in Fig. 17.2 . Potential causes...
Abstract
This chapter discusses the use of mechanical fastening and adhesive bonding, the primary methods for joining polymer matrix composites. It describes and analyzes the basic types of mechanically fastened joints, including single-hole and multirow bolted composite joints. It then reviews the advantages and disadvantages of adhesively bonded joints and compares and contrasts the long-term performance of various joint designs. The chapter also discusses the merits of stepped-lap and bonded-bolted joints.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270152
EISBN: 978-1-62708-301-0
... Abstract This chapter discusses the failure of an aileron control cable in an aircraft and explains how investigators determined the cause. Based on their observations and the results of SEM fractography, investigators concluded that the cable had been damaged by a shearing tool, leading to its...
Abstract
This chapter discusses the failure of an aileron control cable in an aircraft and explains how investigators determined the cause. Based on their observations and the results of SEM fractography, investigators concluded that the cable had been damaged by a shearing tool, leading to its failure.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060163
EISBN: 978-1-62708-355-3
... strength. The problems are doubly complicated for the CMCs because the low shear strength limits the load transfer, as well as providing the possibility of shear failure in the grip section at high gripping pressures. There is a relatively simple technique for minimizing these problems with CMCs, namely...
Abstract
This chapter describes tensile testing of advanced ceramic materials, a category that includes both noncomposite, or monolithic, ceramics and ceramic-matrix composites (CMCs). The chapter presents four key considerations that must be considered when carrying out tensile tests on advanced monolithic ceramics and CMCs. These include effects of flaw type and location on tensile tests, separation of flaw populations, design strength and scale effects, and lifetime predictions and environmental effects. The chapter discusses the advantages, problems, and complications of four basic categories of tensile testing techniques as applied to ceramics and CMCs. These categories are true direct uniaxial tensile tests at ambient temperatures, indirect tensile tests, tests where failure is presumed to result from tensile stresses, and high-temperature tensile tests.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270076
EISBN: 978-1-62708-301-0
... of the sheared portion of the adaptor Case 6: Failure of an Adaptor Assembly in an Electronic Pod in an Aircraft / 77 the SEM fractographs of the two regions. The fractographs indi- cate dimples characteristic of failure by overload. There are no indications of progressive failure. Conclusion and Recommendations...
Abstract
An adaptor and a bolt were overloaded during a flight causing them to fracture. This chapter recounts the circumstances that led to the failure and the investigation that followed. It includes images of the fracture surfaces which show that both components failed quickly due to overload conditions. It also recommends the use of twin suspension hooks to make attachment points more stable under difficult flight conditions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270168
EISBN: 978-1-62708-301-0
..., gross features indicate failure due to shear loads. The damages to the bihexagonal nuts were also similar. The fir tree portions disintegrated into pieces. LP Turbine Disc The damaged turbine disc is shown in Fig. CH44.8 . All the dummy blades were found dislodged from the dovetail mountings...
Abstract
During cyclic spin tests, the turbine disc in an aircraft engine broke apart with a loud noise, followed by a fire. Based on a detailed examination and the results of SEM fractography and hardness measurements, failure analysts concluded that a locking plate became dislodged due to the shearing of the screws that hold it in place. They also provided recommendations to remediate the problem.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270082
EISBN: 978-1-62708-301-0
...). In a helicopter, during ight, one of the three tail rotor blades sheared off at the outboard rib trailing edge. The tip had been Part of the blade near the outboard tip had been torn and sheared pulled out from the rivets by tearing. The failure is attributable to off. The extent of this tear can be seen in Fig...
Abstract
This chapter discusses the investigation of a helicopter tail rotor blade that fractured during a test flight. It includes images of the damaged blade along with close-ups of both sides of the blade tip showing that the tip tore off at the rivets. Based on their observations, investigators concluded that the rotor blade encountered a foreign object in flight causing the tip to shear off.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780199
EISBN: 978-1-62708-281-5
... of failure by large-scale yielding should be considered. For polyethylene ( Ref 5 , 6 ) and polymethyl methacrylate ( Ref 7 ), when the creep strain becomes approximately 8 to 12%, large-scale yielding occurs. This result is consistent with the observation ( Ref 8 ) that the shear yield strain of linear...
Abstract
This article describes the general aspects of and practical problems of failure analysis of creep, stress relaxation, and yielding for homogeneous polymers. The effect of temperature and strain rate on the relationship between yield point and elastic modulus and the aging effect that polymers often undergo at room temperature are also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630023
EISBN: 978-1-62708-270-9
... in Fig. 6(b) , and fatigue failures are likely to be of surface origin. See Chapter 12, “Wear Failures—Fatigue,” in this book. Direct (Transverse) Shear There are two types of direct, or transverse, shear fractures: single shear and double shear. Both involve macro-shearing fractures...
Abstract
The relationship of stress and strength gradients must be considered simultaneously in analysis of a particular type of fracture. This chapter discusses the principal elastic stress distribution in members of various shapes under different types of pure loads. A basic understanding of both the stress and strength gradients of metal parts with and without stress concentrations and under different types of loading is provided. The chapter also describes the effect of service conditions on applied stresses.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270124
EISBN: 978-1-62708-301-0
... www.asminternational.org CASE 25 Failure of a Cardon Shaft Summary In the SEM, elongated dimples, typical of shear overloads, with rub marks were seen on the periphery of the fracture surface (Fig. A cardon shaft in an aircraft engine failed in service. Investi- CH25.3). At the center, corresponding to the region of nal...
Abstract
A cardon shaft operating in an aircraft engine failed and was taken out and analyzed to determine the cause. A photograph of the broken shaft in the as-received condition shows the location and orientation of the fracture. The fracture surface appeared smooth, indicating that a considerable amount of rubbing occurred after the shaft broke. SEM fractography revealed deformation marks and elongated dimples, typical of shear overloads, along with other details. Based on their analysis, investigators concluded that the cardan shaft failed under torsional overload. They also cited a need for a more detailed examination of the driven end of the shaft.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270120
EISBN: 978-1-62708-301-0
... SEM fractograph showing striations typical of fatigue region (a) of Fig. CH23.3 The fracture surface of the port side strut was of the slant type with features typical of shear overload ( Fig. CH23.5 ). There were no regions of delayed failure. Fig. CH23.5 Fracture surface of the port...
Abstract
This chapter describes an investigation following an aircraft accident in which the main undercarriage struts had failed. Visual examination revealed that the starboard strut fractured about 13 cm from the end nearest the underside of the wing. A close-up view of the fracture surface indicated that cracking initiated at the outer periphery of the strut and propagated inward until overload fracture occurred. SEM imaging revealed fatigue striations along the outer periphery and dimples elsewhere, indicative of tensile overload. Based on these observations, investigators concluded that the starboard strut failed by fatigue, which overloaded the port side strut as evidenced by its slant type fracture pattern.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250257
EISBN: 978-1-62708-345-4
... Failure mode Type of failure Fatigue Tooth bending, surface contact (pitting or spalling), rolling contact, thermal fatigue Impact Tooth bending, tooth shear, tooth chipping, case crushing, torsional shear Wear Abrasive, adhesive Stress rupture Internal, external List of contact...
Abstract
Gears can fail in many different ways, and except for an increase in noise level and vibration, there is often no indication of difficulty until total failure occurs. This chapter begins with the classification of gear failure modes, followed by sections discussing the characteristics of various fatigue failures. Then, it provides information on the modes of impact fractures, wear, scuffing, and stress rupture. Next, the chapter describes the causes of gear failures and discusses the processes involved in conducting the failure analysis. Finally, the chapter presents examples of gear failure analysis.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270115
EISBN: 978-1-62708-301-0
... crack growth and rapid fracture 116 / Failure Analysis of Engineering Structures: Case Histories damage, the severity of damage decreasing progressively toward surface was observed in a SEM. The discolored half-moon-shaped the 10th stage. The roots of a few sheared blades were relatively region showed...
Abstract
Two compressor rotors of similar design and construction were severely damaged during operation. In one rotor, all the blades in the third and fourth stages had been sheared off and some had lifted from the dovetail portion of the drum. The damage in the other rotor was more extensive. Most of the blades in the first four stages had sheared off and many lifted from the dovetail region, particularly in the first two stages where several mounting dovetails had also fractured. Based on visual examination and the results of SEM fractography, metallography, and chemical analysis, investigators concluded that the compressor rotors failed due to stress-corrosion cracking in the dovetail mountings. They also provided recommendations to prevent or mitigate future occurrences.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270084
EISBN: 978-1-62708-301-0
.... The hub of the wheel had sheared off. Parallel to the fracture surface, there was circumferential cracking near the fillet of the flange. The crack had proceeded from the outer surface at the fillet to the inner. Fractography revealed cleavage mode. The rim had failed due to excessive pressure of air...
Abstract
An aircraft tire burst while inflating, causing one of the flanges on the wheel hub to fracture. This chapter provides a summary of the investigation along with key findings. It includes images of the damaged hub and describes how various parts failed as the pressure in the tire increased. It explains that the hub material was of good quality under uniform load and that it fractured quickly by cleavage due to the force exerted by the overinflated tire.
1