Skip Nav Destination
Close Modal
Search Results for
sensitivity tests
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 676 Search Results for
sensitivity tests
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Mechanisms and Causes of Failures in Heat Treated Steel Parts
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Image
in Hardness Measurement of Metals—Static Methods
> Hardness Testing<subtitle>Principles and Applications</subtitle>
Published: 01 October 2011
Fig. 14 Sensitivity of the hardness test according to Rockwell C, related to the initial sensitivity at 20 HRC. Source: Ref 1
More
Image
Published: 01 December 2015
Fig. 19 Time/temperature/sensitization curves determined by EPR tests on type 304 stainless steel alloys of variable carbon contents
More
Image
in Stress-Corrosion Cracking of Nickel-Base Alloys[1]
> Stress-Corrosion Cracking: Materials Performance and Evaluation
Published: 01 January 2017
Fig. 5.21 Mean crack velocity of constant-extension-rate tests on sensitized alloy 600 as a function of S 2 O 3 2 − concentration in air-saturated 1.3% H 3 BO 3 at 40 °C (104 °F). Source: Ref 5.83
More
Image
Published: 01 December 2004
Fig. 10 Strain-rate change test, used to determine strain-rate sensitivity, m. See text for discussion.
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 1983
DOI: 10.31399/asm.tb.mlt.t62860343
EISBN: 978-1-62708-348-5
... and rank materials for use in liquid oxygen or liquid fluorine systems, and literally hundreds of materials have been tested. Compatibility tests generally fall into one of two categories: tests that determine the sensitivity of a material to ignition and combustion and tests that measure the intensity...
Abstract
This chapter discusses the compatibility problems that arise from chemical or physical interactions between liquefied gases and the common materials used in their production, storage, transportation, distribution, and use. The discussion covers the compatibility of materials with liquid oxygen and liquid fluorine. Hydrogen-environment embrittlement is unique to low-temperature hydrogen systems and is also discussed.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780105
EISBN: 978-1-62708-281-5
... Such low rates are now easily obtained by new-generation rheometers, which are equipped with precision air bearings. Concurrent with the development of a floating actuator/motor assembly is their unique sensitivity to measure subtle perturbations during rotation of the test fixtures. At very low shear...
Abstract
This article addresses some established protocols in characterizing thermoplastics, whether they are homogeneous resins, alloyed or blended compositions, or highly modified thermoplastic composites. It begins with a description of various approaches used for the determination of molecular weight (MW) by viscosity measurements. This is followed by a discussion of the use of cone and plate and parallel plate geometries in determining the viscoelastic properties of a polymer melt. Details on some of the chromatographic techniques that allow determination of MW and MW distribution of polymers are then provided. The article concludes with information on three distinctive, but complementary operations of thermoanalytical techniques, namely differential scanning calorimetry, thermogravimetric analysis, and thermomechanical testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290243
EISBN: 978-1-62708-306-5
... information on the theory of adhesion. The chapter then describes the considerations for designing adhesively bonded joints and for testing or characterizing adhesive materials. The following section covers the characteristics of the most important synthetic adhesive systems and five groups of adhesives...
Abstract
Adhesive bonding is a widely used industrial joining process in which a polymeric material is used to join two separate pieces (the adherends or substrates). This chapter begins with a discussion on the advantages and disadvantages of adhesive bonding, followed by a section providing information on the theory of adhesion. The chapter then describes the considerations for designing adhesively bonded joints and for testing or characterizing adhesive materials. The following section covers the characteristics of the most important synthetic adhesive systems and five groups of adhesives, namely structural, hot melt, pressure sensitive, water based, and ultraviolet and electron beam cured. The chapter ends with a discussion on some general guidelines for adhesive bonding and the basic steps in the adhesive bonding process.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230209
EISBN: 978-1-62708-298-3
... Abstract This chapter describes the effect of processing variables on the mechanical properties of beryllium, including tensile and yield strength, fracture toughness, creep and fatigue strength, ductile-to-brittle transition, and notch sensitivity. It also discusses the effects of chemical...
Abstract
This chapter describes the effect of processing variables on the mechanical properties of beryllium, including tensile and yield strength, fracture toughness, creep and fatigue strength, ductile-to-brittle transition, and notch sensitivity. It also discusses the effects of chemical composition, impurities, and grain size and the use of hydrostatic testing.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820203
EISBN: 978-1-62708-339-3
.... It is generally better to carry out a sensitizing heat treatment on an unwelded coupon before it is tested and then look for evidence of intergranular corrosion or cracking. Sensitized Metal Sensitization is a metallurgical change that occurs when certain austenitic stainless steels, ferritic stainless...
Abstract
This chapter addresses in-service monitoring and corrosion testing of weldments. Three categories of corrosion monitoring are discussed: direct testing of coupons, electrochemical techniques, and nondestructive testing techniques. The majority of the test methods for evaluating corrosion of weldments are used to assess intergranular corrosion of stainless steels and high-nickel alloys. Other applicable tests evaluate pitting and crevice corrosion, stress-corrosion cracking, and microbiologically influenced corrosion. Each of these test methods is reviewed in this chapter.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030062
EISBN: 978-1-62708-282-2
... loop. The charge, Q , measured during the reactivation scan can be related to the degree of sensitization. With this technique, the grain size must be measured to approximate the area of attack of chromium-depleted material. The double-loop EPR test ( Ref 9 – 12 ) is a refinement of the single-loop...
Abstract
This chapter is dedicated mostly to the metallurgical effects on the corrosion behavior of corrosion-resistant alloys. It begins with a section describing the importance of alloying elements on the corrosion behavior of nickel alloys. The chapter considers the metallurgical effects of alloy composition for heat-resistant alloys, nickel corrosion-resistant alloys, and nickel-base alloys. This chapter also discusses the corrosion implications of changing the alloy microstructure via solid-state transformation, second-phase precipitation, or cold work. It concludes with a comparison of corrosion behavior between cast and wrought product forms.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090349
EISBN: 978-1-62708-266-2
..., environmental factors, and cracking characteristics. It includes a model that accounts for the primary factors involved in intergranular SCC, namely, tensile stresses above the yield stress of the base material, a sensitized microstructure, and reactor cooling water. The chapter also provides proven remedies...
Abstract
This chapter examines the stress-corrosion cracking (SCC) failure of stainless steel pipe welds in boiling water reactor (BWR) service. It explains where most of the failures have occurred and provides relevant details about the materials of construction, fabrication techniques, environmental factors, and cracking characteristics. It includes a model that accounts for the primary factors involved in intergranular SCC, namely, tensile stresses above the yield stress of the base material, a sensitized microstructure, and reactor cooling water. The chapter also provides proven remedies and mitigation techniques corresponding to a wide range of issues related to stress, sensitization, and operating conditions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930085
EISBN: 978-1-62708-359-1
... the surface to give some sensitivity to subsurface flaws. However, permanent magnets are difficult to manipulate in confined spaces. If proper contact between the feet of the magnet and the test surface is not achieved, then the density of magnetic flux in the test piece is weakened, and the test sensitivity...
Abstract
Welded joints in any component or structure require a thorough inspection. The role of nondestructive evaluation (NDE) in the inspection of welds is very important, and the technology has become highly developed as a result. This article describes the applications, methods, evaluation procedures, performance, and limitations of NDE. It provides information on the training and certification of NDE operators, evaluation of test results, and guidance to method selection. Typical examples of various NDE methods for welds are also described.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090095
EISBN: 978-1-62708-266-2
... and 316NG have exhibited resistance to intergranular SCC when tested in high-purity water at elevated temperatures ( Ref 4.7 ). However, other studies ( Ref 4.8 ) have shown that sensitized type 316NG exhibits transgranular SCC when tested in simulated BWR environments that contain sulfate ions...
Abstract
This chapter takes a practical approach to the problem of stress-corrosion cracking (SCC) in stainless steels, explaining how different application environments affect different grades of stainless steel. It describes the causes of stress-corrosion cracking in chloride, caustic, polythionic acid, and high-temperature environments and the correlating effects on austenitic, ferritic, duplex, martensitic, and precipitation hardening stainless steels and nickel-base alloys. It also discusses the contributing effects of sensitization and hydrogen embrittlement and the role of composition, microstructure, and thermal history. Sensitization is particularly detrimental to austenitic stainless steels, and in many cases, eliminating it will eliminate the susceptibility to SCC. The chapter includes an extensive amount of data and illustrations.
Image
in Stainless Steels
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 16.45 (a) AISI 310 austenitic stainless steel annealed at 1060 °C (1940 °F) for 1 h followed by water quenching and a simulated sensitization treatment at 675°C (1245 °F) for 1 h, followed by air-cooling. Etchant: electrolytic oxalic acid at 10% current density of 1 A/cm 2 . Rejected
More
Image
in Viewing the Specimen Using Reflected-Light Microscopy
> Optical Microscopy of Fiber-Reinforced Composites
Published: 01 November 2010
Fig. 5.17 Etched (CrO 3 /HNO 3 , Table 5.3 ) composite specimen after being subjected to a varied solvent-sensitivity stress test. Darker striations show the stress effects in the material after testing. Slightly uncrossed polarized light, 25× objective
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240201
EISBN: 978-1-62708-251-8
... of a triaxial stress field caused by a notch is called notch sensitivity. A common way of evaluating notch sensitivity is a tension test using a notched specimen. The notched tensile test has been used extensively for investigating the properties of high-strength steels, for studying hydrogen embrittlement...
Abstract
The mechanical behavior of a material is its response to an applied load or force. Important mechanical properties are strength, hardness, stiffness, and ductility. This chapter discusses three principal ways in which these properties are tested: tension, compression, and shear. Important tensile properties that can be determined by the tensile test include yield strength, ultimate tensile strength, ductility, resilience, and toughness. The chapter describes the effects of stress concentrations on ductile metals under cyclic loads. Other topics covered include combined stresses, yield criteria, and residual stresses of metals.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610025
EISBN: 978-1-62708-303-4
.... Most brittle metals are sensitive to stress-concentration effects under both static and dynamic loading. Notched Tensile Test Ductility measurements on standard smooth tensile specimens do not always reveal metallurgical or environmental changes that can lead to reduced local ductility...
Abstract
This chapter discusses the stress-strain response of materials, how it is measured, and how it used to set performance expectations. It begins by describing the common tensile test and how it sheds light on the elastic design of structures as well as plasticity and fracture behaviors. It explains how engineering and true stress-strain curves differ, how one is used for design and the other for analyzing metal forming operations. It discusses the effect of holes, fillets, and radii on the distribution of stresses and the use of notch tensile testing to detect metallurgical embrittlement. The chapter also covers compression, shear, and torsion testing, the prediction of yielding, residual stress, and hardness.
Image
in Mechanisms of Stress-Corrosion Cracking[1]
> Stress-Corrosion Cracking: Materials Performance and Evaluation
Published: 01 January 2017
Fig. 1.19 Variation in the average crack propagation rate in sensitized type 304 stainless steel in water at 288 °C (550 °F) with oxygen content. Data are from constant-extension-rate testing, constant-load testing, and field observations on boiling water reactor piping. IGSCC, intergranular
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720345
EISBN: 978-1-62708-305-8
... on tubing having wall thicknesses less than 3.2 mm (⅛ in.), but successful production testing has been reported on tubing having wall thicknesses to 13 mm (½ in.). Most eddy current tests use differential systems and are most sensitive to flaws that involve a marked change in normal electrical...
Abstract
Wrought tubular products are nondestructively inspected chiefly by eddy current techniques (including the magnetic flux leakage technique) and by ultrasonic techniques. The methods discussed in this chapter include eddy current inspection, flux leakage inspection, ultrasonic inspection, magnetic particle inspection, liquid penetrant inspection, and radiographic inspection of resistance welded tubular products, seamless steel tubular products, and nonferrous tubular products. This chapter discusses the fundamental factors that should be considered in selecting a nondestructive inspection method and in selecting from among the commercially available inspection equipment. The factors covered are product characteristics, nature of the flaws, extraneous variables, rate of inspection, end effect, mill versus laboratory inspection, specification requirements, equipment costs, and operating costs.
1