Skip Nav Destination
Close Modal
Search Results for
semicrystalline thermoplastics
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 48 Search Results for
semicrystalline thermoplastics
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 November 2010
Image
Published: 01 November 2012
Image
Published: 01 November 2010
Image
Published: 01 October 2012
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780267
EISBN: 978-1-62708-281-5
... by providing information on the processes involved in interfacial and cohesive wear. This is followed by sections describing the wear process and applications of elastomers, thermosets, glassy thermoplastics, and semicrystalline thermoplastics. The effects of environmental and lubricant on the wear failures...
Abstract
This article provides details on several of the classifications of polymer wear mechanisms, using wear data and micrographs from published works. The primary goals are to present the mechanisms of polymer wear and to quantify wear in terms of wear rate. The discussion begins by providing information on the processes involved in interfacial and cohesive wear. This is followed by sections describing the wear process and applications of elastomers, thermosets, glassy thermoplastics, and semicrystalline thermoplastics. The effects of environmental and lubricant on the wear failures of polymers are then discussed. The article further includes a case study describing the tribological performance of nylon. It ends by presenting some examples of wear failures of plastics.
Image
Published: 01 December 2003
Fig. 1 Temperature dependence of the modulus, E , of polymers. Examples of idealized behaviors exhibited by an amorphous thermoplastic (A), a semicrystalline thermoplastic (B), and a thermoset (C)
More
Image
Published: 01 October 2012
Fig. 12.9 Schematic diagrams showing the effects of temperature on the modulus of (a) amorphous and (b) semicrystalline thermoplastics. T g , glass transition temperature; T m , melting temperature
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870063
EISBN: 978-1-62708-314-0
... Abstract This chapter discusses the use of thermoset and thermoplastic resins in polymer matrix composites. It begins by explaining how the two classes of polymer differ and how it impacts their use as matrix materials. It then goes on to describe the characteristics of polyester, vinyl ester...
Abstract
This chapter discusses the use of thermoset and thermoplastic resins in polymer matrix composites. It begins by explaining how the two classes of polymer differ and how it impacts their use as matrix materials. It then goes on to describe the characteristics of polyester, vinyl ester, epoxy, bismaleimide, cyanate ester, polyimide, and phenolic resins and various toughening methods. The chapter also covers thermoplastic matrix materials and product forms and provides an introduction to the physiochemical tests used to characterize resins and cured laminates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550325
EISBN: 978-1-62708-307-2
... with initiator Thermoplastics are further classified as being either amorphous or semicrystalline. The differences between an amorphous and a semicrystalline thermoplastic are shown in Fig. 7.6 . An amorphous thermoplastic contains a massive random array of entangled molecular chains. The chains...
Abstract
This chapter describes the molecular structures and chemical reactions associated with the production of thermoset and thermoplastic components. It compares and contrasts the mechanical properties of engineering plastics with those of metals, and explains how fillers and reinforcements affect impact and tensile strength, shrinkage, thermal expansion, and thermal conductivity. It examines the relationship between tensile modulus and temperature, provides thermal property data for selected plastics, and discusses the effect of chemical exposure, operating temperature, and residual stress. The chapter also includes a section on the uses of thermoplastic and thermosetting resins and provides information on fabrication processes and fastening and joining methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610327
EISBN: 978-1-62708-303-4
... Thermoplastics are further classified as being either amorphous or semicrystalline. The differences between an amorphous and a semicrystalline thermoplastic are illustrated in Fig. 16 . An amorphous thermoplastic contains a massive random array of entangled molecular chains. The chains themselves are held...
Abstract
This chapter covers the fatigue and fracture behaviors of ceramics and polymers. It discusses the benefits of transformation toughening, the use of ceramic-matrix composites, fracture mechanisms, and the relationship between fatigue and subcritical crack growth. In regard to polymers, it covers general characteristics, viscoelastic properties, and static strength. It also discusses fatigue life, impact strength, fracture toughness, and stress-rupture behaviors as well as environmental effects such as plasticization, solvation, swelling, stress cracking, degradation, and surface embrittlement.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870183
EISBN: 978-1-62708-314-0
... be well above the glass transition temperature T g for amorphous resins or above the melt temperature T m for semicrystalline materials. Fig. 6.1 Typical thermoplastic composite process cycle. Source: Ref 1 As a general rule, the processing temperature for an amorphous thermoplastic...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030211
EISBN: 978-1-62708-349-2
... of thermoplastic matrices is affected more by the cure cycle than the microstructure of thermosetting matrices. This is due to the semicrystalline nature of many engineering thermoplastics used as matrices in high-performance composites. However, the microstructure of thermosetting matrices can also be influenced...
Abstract
Microstructural analysis of the composite matrix is necessary to understand the performance of the part and its long-term durability. This chapter focuses on the microstructural analysis of engineering thermoplastic-matrix composites and the influence of cooling rate and nucleation on the formation of spherulites in high-temperature thermoplastic-matrix carbon-fiber-reinforced composites. It also describes the microstructural analysis of a bio-based thermosetting-matrix natural fiber composite system.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550385
EISBN: 978-1-62708-307-2
... thermoplastic with good high-temperature resistance to 121 °C (250 °F). Polyphenylene sulfide is a semicrystalline thermoplastic with a lower usage temperature (<93 °C, or 200 °F) than PEEK and PEKK (121 °C, or 250 °F). Finally, polypropylene is a semicrystalline thermoplastic that is limited to low usage...
Abstract
Polymer-matrix composites are among the lightest structural materials in use today. They are also highly resistant to corrosion and fatigue and their load-carrying capabilities, such as strength and stiffness, can be tailored for specific applications. This chapter discusses the primary advantages and disadvantages of polymer-matrix composites, how they are produced, and how they perform in different applications. It describes the construction of laminates, the fibers and resins used, and the methods by which they are combined. It explains how strength, modulus, toughness, and high-temperature and corrosion behaviors are determined by the orientation, shape, and spacing of fibers, the number of plies, resin properties, and consolidation and forming methods. The chapter also covers secondary fabrication processes, such as thermoforming, machining, and joining, as well as production equipment and product forms, and include guidelines for optimizing tradeoffs when selecting fibers, resins, and production techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870401
EISBN: 978-1-62708-314-0
... characteristics of several thermosets and thermoplastic composites are shown in Fig. 15.12 . The lowest moisture levels are attained with the semicrystalline thermoplastic polyetheretherketone. The amorphous thermoplastic, high temperature amorphous (HTA), absorbs more moisture but is still better than the two...
Abstract
This chapter describes the conditions under which environmental degradation is likely to occur in polymer matrix composites and the potential damage it can cause. It discusses the problems associated with moisture absorption and exposure to solvents, fuels, ultraviolet radiation, lightning strikes, thermal oxidation, and extreme temperatures. It also discusses the factors that influence flammability.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030001
EISBN: 978-1-62708-349-2
...-weight polymer chains. These materials usually require high temperatures, pressures, or the use of solvents for processing that must be removed after manufacturing. An added complexity of processing thermoplastics exists in the ability for some thermoplastics to form a semicrystalline structure ( Fig...
Abstract
This chapter provides a general description of materials and methods for manufacturing high-performance composites. The materials covered are polymer matrices and prepreg materials and the methods include infusion processes, composite-toughening methods, matrix-toughening methods, and dispersed-phase toughening. In addition, the chapter provides information on interlayer-toughened composites and honeycomb or foam structure composite materials. It also discusses the processes in optical microscopy of composite materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.9781627083492
EISBN: 978-1-62708-349-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870285
EISBN: 978-1-62708-314-0
... designs are shown in Fig. 10.22 . A design for highly crystalline polymers is shown in Fig. 10.22(a) . Since these materials have very sharp melting points, a very short compression section is used. The compression section is longer for semicrystalline thermoplastics ( Fig. 10.22b ) because they require...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780305
EISBN: 978-1-62708-281-5
... The phenomenon of ESC in glassy amorphous thermoplastics has been recognized for almost 40 years. Direct evidence of crazing by ESC of semicrystalline polytetrafluoroethylene was observed as early as 1973 and then later in polyethylene and nylon ( Ref 2 – 5 ); thus, craze growth and breakdown in these materials...
Abstract
This article discusses the molecular mechanism, environmental criteria, and material optimization of environmental stress crazing (ESC) in glassy thermoplastics, polyethylenes, and nylons. In addition, it provides information on various tests used to determine relative susceptibility to ESC, namely constant tensile load testing and constant-strain testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780003
EISBN: 978-1-62708-281-5
... Crystallinity is not only possible in polymers, some thermoplastic polymers have substantial crystallinity. Such polymers are termed semicrystalline because the degree of crystallinity never reaches 100%; they include such important thermoplastics as PE and nylons (or polyamides, PA). Most polymers, however...
Abstract
This introductory article describes the various aspects of chemical structure and composition that are important to an understanding of polymer properties and their eventual effect on the end-use performance of engineering plastics, namely thermoplastics and thermosets. The most important properties of polymers and the most significant influences of structure on those properties are covered. The article also includes some general information on the classification and naming of polymers and plastics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780115
EISBN: 978-1-62708-281-5
... the rubbery plateau, in reference to the high degree of molecular motion possible at these temperatures. Fig. 1 Temperature dependence of the modulus, E , of polymers. Examples of idealized behaviors exhibited by an amorphous thermoplastic (A), a semicrystalline thermoplastic (B), and a thermoset (C...
Abstract
This article covers the thermal analysis and thermal properties of engineering plastics with respect to chemical composition, chain configuration, and/or conformation of the base polymers. The thermal analysis techniques covered are differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and rheological analysis. The basic thermal properties covered include thermal conductivity, temperature resistance, thermal expansion, specific heat, and the determination of glass-transition temperatures. The article further describes various factors influencing the determination of service temperature of a material. Representative examples of different types of engineering thermoplastics are discussed in terms of structure and thermal properties. The article also discusses the thermal and related properties of thermoset resin systems.
1