Skip Nav Destination
Close Modal
Search Results for
scuffing resistance
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 49 Search Results for
scuffing resistance
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 September 2005
Fig. 11 Plot of contact temperature versus pinion roll angle for gear tooth geometry that was optimized for maximum scuffing resistance. Maximum T f , 150 °C (302 °F); scuffing probability, <5%
More
Image
Published: 01 September 2005
Fig. 10 Plot of film thickness versus pinion roll angle for gear tooth geometry that was optimized for maximum scuffing resistance. λ min , 0.097; probability of wear, 94%
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250019
EISBN: 978-1-62708-345-4
...); scuffing probability, 63% Fig. 10 Plot of film thickness versus pinion roll angle for gear tooth geometry that was optimized for maximum scuffing resistance. λ min , 0.097; probability of wear, 94% Fig. 11 Plot of contact temperature versus pinion roll angle for gear tooth geometry...
Abstract
This chapter reviews the knowledge of the field of gear tribology and is intended for both gear designers and gear operators. Gear tooth failure modes are discussed with emphasis on lubrication-related failures. The chapter is concerned with gear tooth failures that are influenced by friction, lubrication, and wear. Equations for calculating lubricant film thickness, which determines whether the gears operate in the boundary, elastohydrodynamic, or full-film lubrication range, are given. Also, given is an equation for Blok's flash temperature, which is used for predicting the risk of scuffing. In addition, recommendations for lubricant selection, viscosity, and method of application are discussed. The chapter discusses in greater detail the applications of oil lubricant. Finally, a case history demonstrates how the tribological principles discussed in the chapter can be applied practically to avoid gear failure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900193
EISBN: 978-1-62708-350-8
....9781627083157 Process Benefits Scuffing Resistance Fatigue Properties Corrosion Resistance Low Distortion Cost of Floor Space Why Ferritic Nitrocarburize? Early History of Ferritic Nitrocarburizing Operating Costs Installation Costs Cost of Insurance and Freight Training...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770077
EISBN: 978-1-62708-337-9
... are notoriously difficult to lubricate. Roberts ( Ref 40 ) goes on to assert that there is no direct relationship between scuffing resistance and retained austenite content. Effect of retained austenite on the scuffing tendency of steel Table 4.3 Effect of retained austenite on the scuffing tendency...
Abstract
This chapter addresses the issue of retained austenite in quenched carburized steels. It explains why retained austenite can be expected at the surface of case-hardened components, how to estimate the amount that will be present, and how to effectively stabilize or otherwise control it. It presents detailed images and data plots showing how retained austenite appears and how it influences hardness, tensile properties, residual stresses, fatigue and fracture behaviors, and wear resistance.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250257
EISBN: 978-1-62708-345-4
... Macropitting Subsurface-Origin Macropitting External Rupture Stress Rupture Scuffing Adhesive Wear Wear-Resistant Coatings <xref ref-type="bibr" rid="t51250257-ref6">(Ref 6)</xref> Abrasive Wear Wear Tooth Chipping Tooth Shear Impact Tooth-Bending Impact Thermal Fatigue...
Abstract
Gears can fail in many different ways, and except for an increase in noise level and vibration, there is often no indication of difficulty until total failure occurs. This chapter begins with the classification of gear failure modes, followed by sections discussing the characteristics of various fatigue failures. Then, it provides information on the modes of impact fractures, wear, scuffing, and stress rupture. Next, the chapter describes the causes of gear failures and discusses the processes involved in conducting the failure analysis. Finally, the chapter presents examples of gear failure analysis.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300079
EISBN: 978-1-62708-323-2
..., fretting, scuffing, and spalling and introduces the concepts of tribocorrosion and biotribology. abrasive wear adhesive wear erosion fretting corrosion fretting wear impact wear rolling wear tribocorrosion 4.1 The Difference Between Wear and Erosion There may be no mechanism...
Abstract
This chapter covers common types of erosion, including droplet, slurry, cavitation, liquid impingement, gas flow, and solid particle erosion, and major types of wear, including abrasive, adhesive, lubricated, rolling, and impact wear. It also covers special cases such as galling, fretting, scuffing, and spalling and introduces the concepts of tribocorrosion and biotribology.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770001
EISBN: 978-1-62708-337-9
... tooth size is about 2 mm module (12.7 dp) without downgrading. However, within its safe range of application, the case shallowness provides good bending fatigue, contact fatigue, wear, and scuffing resistance. Carbon case hardening can be employed to achieve a wide range of effective case depths (up...
Abstract
This chapter provides a brief but practical overview of the case carburizing process. It discusses the benefits and challenges of the process and compares and contrasts it with other hardening methods. It explains how design allowables and safety factors compensate for unknowns and familiarizes readers with the steps involved in determining case depth and verifying that case carbon requirements have been met.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320021
EISBN: 978-1-62708-347-8
... to be effective in applications susceptible to gear scuffing. It is claimed that profile conformance of through-hardened gears, because of their low surface hardness, reduces sliding friction and thereby helps to increase scuffing resistance. Overall, through-hardened gears are used in gearboxes that require...
Abstract
Through-hardening heat treatment is generally used for gears that do not require high surface hardness. In through hardening, gears are first heated to a required temperature and then cooled either in the furnace or quenched in air, gas, or liquid. Four heat treatment methods are primarily used for through-hardened gears: annealing, normalizing and annealing, normalizing and tempering, and quenching and tempering. This chapter begins with a discussion of these through-hardening processes. This is followed by sections providing some factors affecting the design and hardness levels of through-hardened gears. Next, the chapter reviews the considerations related to distortion of through-hardened gears. It then discusses the applications of through-hardened gears. Finally, the chapter presents a case history of the design and manufacture of a through-hardened gear rack.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250155
EISBN: 978-1-62708-345-4
..., or 1720 MPa, ultimate tensile strength) corrosion-resistant rack. For this application, the quality required was rack teeth of AGMA class 9. To minimize manufacturing cost, it was decided not to consider any post-heat-treat finishing operation. To meet these criteria, selection of a proper material...
Abstract
The through-hardening process is generally used for gears that do not require high surface hardness. Four different methods of heat treatment are primarily used for through-hardened gears. In ascending order of achievable hardness, these methods are annealing, normalizing and annealing, normalizing and tempering, and quenching and tempering. This chapter discusses the processes involved in the through-hardening of gears. It provides information on designing procedures, hardness, distortion, and applications of the through-hardened gears. The chapter presents a case history on the design and manufacture of a through-hardened gear rack.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300121
EISBN: 978-1-62708-323-2
..., the hatch covers flexed with the ship. Similarly, it is well known that rapidly wearing punch press dies can be made more wear resistant by changing materials from, for example, oil hardening tool steel to carbide-containing powder metallurgy (P/M) tool steels or even cemented carbide. Most material...
Abstract
This chapter discusses the processes and procedures involved in tribotesting, the significance of test parameters and conditions, and practical considerations including test metrics and measurements and the interpretation of wear damage. It also describes the different types of erosion tests in use and common approaches for adhesive wear and abrasion testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250293
EISBN: 978-1-62708-345-4
... gear teeth. Note micropitting at the pitch line, scattered macropits, and one area of gross pitting near the left end. Fig. 3 An example of gear tooth scuffing. Note radial scratch lines. Fig. 5 Misaligned gear has tooth breakage at ends of teeth. Fig. 1 Tooth contact...
Abstract
This chapter summarizes the various kinds of gear wear and failure and how gear life in service is estimated and discusses the kinds of flaws in material that may lead to premature gear fatigue failure. The topics covered are alignment, gear tooth, surface durability and breakage of gear tooth, life determined by contact stress and bending stress, analysis of gear tooth failure by breakage after pitting, and metallurgical flaws that reduce the life of gears. The chapter briefly reviews some components in the design and structure of each gear and/or gear train that must be considered in conjunction with the teeth to enhance fatigue life.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410551
EISBN: 978-1-62708-265-5
... operations ( Ref 22.18 ). Plasma nitriding is widely applied and is the oldest plasma surface technology used commercially. Improvements in friction, scuffing resistance, and fatigue resistance are produced on a wide variety of materials, especially alloy and stainless steels, in a wide variety...
Abstract
This chapter describes surface modification processes that go beyond conventional heat treatments, including plasma nitriding, plasma carburizing, low-pressure carburizing, ion implantation, physical and chemical vapor deposition, salt bath coating, and transformation hardening via high-energy laser and electron beams. The chapter compares methods and includes several example applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350231
EISBN: 978-1-62708-315-7
... Abstract This chapter is a compilation of terms and definitions related to surface engineering for corrosion and wear resistance. corrosion resistance surface treatment wear resistance Surface Engineering for Corrosion and Wear Resistance Copyright © 2001 ASM International® J.R...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.9781627083157
EISBN: 978-1-62708-315-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250311
EISBN: 978-1-62708-345-4
... are sliding against each other, with lubrication, under high load. Therefore, some indication of the lubricated wear resistance of the material being tested can be obtained. In addition, the resistance of the material/surface finish/lubricant system to scuffing can be studied. Tests are conducted at very high...
Abstract
Mechanical tests are performed to evaluate the durability of gears under load. The chapter first discusses the processes involved in the computations of stress for test parameters of gear. Next, the chapter reviews the four areas of specimen characterization of a test program, namely dimensional, surface finish texture, metallurgical, and residual stress. The following section presents the tests that simulate gear action, namely the rolling contact fatigue test, the single-tooth fatigue test, the single-tooth single-overload test, and the single-tooth impact test. Finally, the chapter describes the test procedures for surface durability (pitting), root strength (bending), and scoring (or scuffing) testing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780259
EISBN: 978-1-62708-281-5
... of the SAR number is in the ranking of construction materials for use in pumping a particular slurry. Wear Tests for Elastomers ASTM D 1630-94, “Standard Test Method for Rubber Property—Abrasion Resistance (Footwear Abrader)” ( Ref 28 ), gives a quantitative measure of scuffing abrasion resistance...
Abstract
This article focuses on friction and wear as they relate to polymeric materials, covering friction and wear applications for polymeric materials. The discussion covers the causes and mechanisms of friction, wear, and lubrication; different test methods developed to simulate friction and wear mechanisms; and friction and wear test data used for polymeric materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350183
EISBN: 978-1-62708-315-7
... nickel-phosphorus plating, ferritic nitrocarburizing, sulfurizing, and spark hardening Fig. 16 Compares the wear, scuffing, and spalling resistance of sheet-metal dies coated by the following surface-hardening processes: uncoated, nitrided, borided, nitrogen ion implanted, chrome plated, sulfurized...
Abstract
This chapter compares and contrasts surface-engineering processes based on process availability, corrosion and wear performance, distortion effects, penetration depth or attainable coating thickness, and cost. It provides both quantitative and qualitative information as well as measured property values.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.9781627083232
EISBN: 978-1-62708-323-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900201
EISBN: 978-1-62708-350-8
.... The process forms a complete multilayer surface case that comprises a compound layer and a diffusion layer. The surface compound layer, consisting of different compounds of iron, nitrogen, and oxygen, resists abrasion corrosion and scuffing and is fairly stable at elevated operating temperatures. Surface...
1