Skip Nav Destination
Close Modal
By
Vladimir Dmitrovic, Rama I. Hegde, Andrew J. Mawer, Rik J. Otte, D. Martin Knotter ...
Search Results for
scanning transmission electron microscopes
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 137 Search Results for
scanning transmission electron microscopes
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220085
EISBN: 978-1-62708-259-4
... data as well. It discusses the basic design and operating principles of scanning electron microscopes, transmission electron microscopes, and scanning transmission electron microscopes and how they are typically used. It describes the additional information contained in backscattered electrons...
Abstract
This chapter discusses the use of electron microscopy in metallographic analysis. It explains how electrons interact with metals and how these interactions can be harnessed to produce two- and three-dimensional images of metal surfaces and generate crystallographic and compositional data as well. It discusses the basic design and operating principles of scanning electron microscopes, transmission electron microscopes, and scanning transmission electron microscopes and how they are typically used. It describes the additional information contained in backscattered electrons and emitted x-rays and the methods used to access it, namely wavelength and energy dispersive spectroscopy and electron backscattering diffraction techniques. It also describes the role of focused ion beam milling in sample preparation and provides information on atom probes, atomic force microscopes, and laser scanning microscopes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400149
EISBN: 978-1-62708-258-7
... equipment. This chapter describes how these instruments can be used to gather important information about a microstructure. The instruments covered include image analyzers, transmission electron microscopes, scanning electron microscopes, electron probe microanalyzers, scanning transmission electron...
Abstract
Several specialized instruments are available for the metallographer to use as tools to gather key information on the characteristics of the microstructure being analyzed. These include microscopes that use electrons as a source of illumination instead of light and x-ray diffraction equipment. This chapter describes how these instruments can be used to gather important information about a microstructure. The instruments covered include image analyzers, transmission electron microscopes, scanning electron microscopes, electron probe microanalyzers, scanning transmission electron microscopes, x-ray diffractometers, microhardness testers, and hot microhardness testers. A list of other instruments that are usually located in a research laboratory or specialized testing laboratory is also provided.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110434
EISBN: 978-1-62708-247-1
.... The discussion includes a comparison of scanning transmission electron microscope-EDS elemental mapping and mapping with an SDD. A brief section is devoted to the discussion on the artifacts that occur during X-ray mapping. elemental mapping energy dispersive X-ray spectroscopy lithium-drifted EDS...
Abstract
This article provides an overview of the most common micro-analytical technique in the failure analysis laboratory: energy dispersive X-ray spectroscopy (EDS). It discusses the general characteristics, advantages, and disadvantages of some of the X-ray detectors attached to the scanning electron microscope chamber including the lithium-drifted EDS detector, silicon drift detector (SDD), and wavelength dispersive X-ray detector. The article then provides information on qualitative and quantitative X-ray analysis programs followed by a discussion on EDS elemental mapping. The discussion includes a comparison of scanning transmission electron microscope-EDS elemental mapping and mapping with an SDD. A brief section is devoted to the discussion on the artifacts that occur during X-ray mapping.
Image
in Irradiation-Assisted Stress-Corrosion Cracking[1]
> Stress-Corrosion Cracking: Materials Performance and Evaluation
Published: 01 January 2017
Fig. 6.9 Composition profiles across grain boundaries obtained by a dedicated scanning transmission electron microscope (DSTEM) in a 20Cr-25Ni-Nb stainless steel irradiated to 2 to 5 × 10 21 n/cm 2 in a steam-generated heavy water reactor (SGHWR) at 288 °C (550 °F). Data are compared
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780383
EISBN: 978-1-62708-281-5
... microscope, and the scanning Auger microscope. These instruments all have in common the feature of obtaining information from the surface (or volume, for the scanning transmission electron microscope) of the sample by scanning an electron beam over a raster and analyzing the various signals generated...
Abstract
This article covers common techniques for surface characterization, including the modern scanning electron microscopy and methods for the chemical characterization of surfaces by Auger electron spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. The principles of surface analysis and some of the applications of the technique in polymer failure studies are also provided.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.9781627082815
EISBN: 978-1-62708-281-5
Book: STEM in SEM Introduction to Scanning Transmission Electron Microscopy for Microelectronics Failure
Series: ASM Technical Books
Publisher: ASM International
Published: 23 January 2020
DOI: 10.31399/asm.tb.stemsem.t56000020
EISBN: 978-1-62708-292-1
... Abstract This chapter discusses the setup and use of a transmission electron detector in a typical scanning electron microscope (SEM). It describes the arrangement and function of the primary components in the detector, following the signal path from the sample to a micromirror array where...
Abstract
This chapter discusses the setup and use of a transmission electron detector in a typical scanning electron microscope (SEM). It describes the arrangement and function of the primary components in the detector, following the signal path from the sample to a micromirror array where it is directed by the user to either a CMOS sensor (to record diffraction patterns) or a photomultiplier tube (to observe real-space images). The chapter discusses some of the nuances of digital imaging and diffraction and includes examples in which transmission electron detectors are used to analyze gold films, carbon nanotubes, zeolite sheets, and monolayer graphene. It also describes emerging techniques, including four-dimensional STEM, thermal diffuse scattering, energy filtering, aberration correction, and atomic resolution imaging.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780433
EISBN: 978-1-62708-281-5
... molding scanning transmission electron microscope time temperature glass-transition temperature melting temperature toluene diisocyanate tetraethylenetriamine thermogravimetric analysis tetraglycidyl methylenedianiline thin-layer chromatography TMA TMS TOF-SIMS TPX TTT UBC UHMWPE UL UP UV VA VC VDC...
Book: STEM in SEM Introduction to Scanning Transmission Electron Microscopy for Microelectronics Failure
Series: ASM Technical Books
Publisher: ASM International
Published: 23 January 2020
DOI: 10.31399/asm.tb.stemsem.t56000001
EISBN: 978-1-62708-292-1
... Abstract This chapter discusses the principles of scanning transmission electron microscopy (STEM) as implemented using conventional scanning electron microscopes (SEMs). It describes the pros and cons of low-energy imaging and diffraction, addresses basic hardware requirements, and provides...
Abstract
This chapter discusses the principles of scanning transmission electron microscopy (STEM) as implemented using conventional scanning electron microscopes (SEMs). It describes the pros and cons of low-energy imaging and diffraction, addresses basic hardware requirements, and provides information on imaging modes, detector positioning and alignment, and the effect of contrast reversal. It also discusses beam convergence and angular selectivity, the use of application-specific masks, and how to generate grain orientation maps for different material systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110447
EISBN: 978-1-62708-247-1
... six methods used in semiconductor industry are: Auger spectroscopy, dynamic secondary ion mass spectroscopy, time of flight static secondary ion mass spectroscopy (ToF-SIMS), X-ray photoelectron spectroscopy, scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), and transmission...
Abstract
There are several analytical methods available that can be used in-line on whole wafers as well as off-line on de-processed products that are returned from the field. These techniques are surface analytical techniques that can be used to characterize the bulk of the material. The main six methods used in semiconductor industry are: Auger spectroscopy, dynamic secondary ion mass spectroscopy, time of flight static secondary ion mass spectroscopy (ToF-SIMS), X-ray photoelectron spectroscopy, scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX), and transmission electron microscope-EDX. This review specifically addresses ToF-SIMS and describes some typical examples of the application of Auger and SEM-EDX.
Series: ASM Technical Books
Publisher: ASM International
Published: 23 January 2020
DOI: 10.31399/asm.tb.stemsem.9781627082921
EISBN: 978-1-62708-292-1
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110461
EISBN: 978-1-62708-247-1
... imaging and analytical capabilities of a TEM which can be a major handicap for FA samples. In addition, transmission electron microscopes operating at a high energy, 80 ~ 300 keV, are also better suited for thicker samples, often encountered in FA, than most scanning electron microscopes operating at 30...
Abstract
The ultimate goal of the failure analysis process is to find physical evidence that can identify the root cause of the failure. Transmission electron microscopy (TEM) has emerged as a powerful tool to characterize subtle defects. This article discusses the sample preparation procedures based on focused ion beam milling used for TEM sample preparation. It describes the principles behind commonly used imaging modes in semiconductor failure analysis and how these operation modes can be utilized to selectively maximize signal from specific beam-specimen interactions to generate useful information about the defect. Various elemental analysis techniques, namely energy dispersive spectroscopy, electron energy loss spectroscopy, and energy-filtered TEM, are described using examples encountered in failure analysis. The origin of different image contrast mechanisms, their interpretation, and analytical techniques for composition analysis are discussed. The article also provides information on the use of off-axis electron holography technique in failure analysis.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410001
EISBN: 978-1-62708-265-5
... are given throughout this book, and the techniques used to produce the images are identified in the figure captions. Scanning Electron Microscopy Microstructures on polished and etched steel surfaces, shown by variations in reflected light within the resolution limits of the light microscope...
Abstract
This chapter provides perspective on the physical dimensions associated with the microstructure of steel and the instruments that reveal grain size, morphology, phase distributions, crystal defects, and chemical composition, from which properties and behaviors derive. The chapter also reviews the definitions and classifications used to identify and differentiate commercial steels, including the AISI/SAE and UNS designation systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270025
EISBN: 978-1-62708-301-0
... there are two types: the transmission electron microscope (TEM) ( Ref 5 ) and the scanning electron microscope (SEM) ( Ref 6 , 7 ). The latter is more convenient for rapid examination of fracture surfaces. Transmission Electron Microscopy For many years, TEM has been a powerful tool for the study...
Abstract
This chapter provides an overview of the tools and techniques used to examine failure specimens and the wealth of information that can be obtained from fracture surfaces, cracks, wear patterns, and other such features. It discusses the use of metallography, fractography, and optical and electron microscopy. It presents a number of images recorded using these methods and explains what they reveal about the mode of fracture and the state of the component prior to failure.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110042
EISBN: 978-1-62708-247-1
... to light that can be manipulated and focused with lenses, i.e., the visible light spectrum, plus the infrared and ultraviolet. We will not address non-photonic microscopy, e.g., electron microscopes, focused ion beams, ultrasonic or atomic force microscopes, none of which use photonic light for image...
Abstract
Moore's Law has driven many degree circuit features below the resolving capability of optical microscopy. Yet the optical microscope remains a valuable tool in failure analysis. This article describes the physics governing resolution and useful techniques for extracting the small details. It begins with the basic microscope column and construction. The article discusses microscope adjustments, brightfield and darkfield illumination, and microscope concepts important to liquid crystal techniques. It also discusses solid immersion lenses, infrared and ultraviolet microscopy and concludes with laser microscopy techniques such as thermal induced voltage alteration and external induced voltage alteration.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460121
EISBN: 978-1-62708-285-3
... in the coating or substrate-coating interface 4 Focused ion beam Preparation-specific sections for examination in the scanning and transmission electron microscopes, coating splat interface or coating-substrate interface 5 Electron probe microanalysis Precise chemistry, diffusion layers in a cold...
Abstract
This chapter elucidates the indispensable role of characterization in the development of cold-sprayed coatings and illustrates some of the common processes used during coatings development. Emphasis is placed on the advanced microstructural characterization techniques that are used in high-pressure cold spray coating characterization, including residual-stress characterization. The chapter includes some preliminary screening of tool hardness and bond adhesion strength, as well as a distinction between surface and bulk characterization techniques and their importance for cold spray coatings. The techniques covered are optical microscopy, X-Ray diffraction, scanning electron microscopy, focused ion beam machining, electron probe microanalysis, transmission electron microscopy, and electron backscattered diffraction. The techniques also include electron channeling contrast imaging, X-Ray photoelectron spectroscopy, X-ray fluorescence, Auger electron spectroscopy, Raman spectroscopy, oxygen analysis, and nanoindentation.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110413
EISBN: 978-1-62708-247-1
... Abstract This article provides an overview of how to use the scanning electron microscope (SEM) for imaging integrated circuits. The discussion covers the principles of operation and practical techniques of the SEM. The techniques include sample mounting, sample preparation, sputter coating...
Abstract
This article provides an overview of how to use the scanning electron microscope (SEM) for imaging integrated circuits. The discussion covers the principles of operation and practical techniques of the SEM. The techniques include sample mounting, sample preparation, sputter coating, sample tilt and image composition, focus and astigmatism correction, dynamic focus and image correction, raster alignment, and adjusting brightness and contrast. The article also provides information on achieving ultra-high resolution in the SEM. It concludes with information on the general characteristics and applications of environmental SEM.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110067
EISBN: 978-1-62708-247-1
... Abstract The scanning acoustic microscope (SAM) is an important tool for development of improved molded and flip chip packages. The SAM used for integrated circuit inspection is a hybrid instrument with characteristics of both the Stanford SAM and the C-scan recorder. This chapter presents...
Abstract
The scanning acoustic microscope (SAM) is an important tool for development of improved molded and flip chip packages. The SAM used for integrated circuit inspection is a hybrid instrument with characteristics of both the Stanford SAM and the C-scan recorder. This chapter presents the historical development of SAM for integrated circuit package inspection, SAM theory, and analysis considerations. Case studies are presented to illustrate the practical applications of SAM. Other non-destructive imaging tools are briefly discussed, as well as SAM challenges and methods including spectral signature analysis and GHz-SAM.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430107
EISBN: 978-1-62708-253-2
... these limitations, researchers have developed electron microscopes, namely, the scanning electron microscope and the transmission electron microscope; both use a beam of energetic electrons rather than light to examine the materials on a very fine scale. Table 5.2 gives comparative data for the three microscopic...
Abstract
This chapter describes some of the most effective tools for investigating boiler tube failures, including scanning electron microscopy, optical emission spectroscopy, atomic absorption spectroscopy, x-ray fluorescence spectroscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. It explains how the tools work and what they reveal. It also covers the topic of image analysis and its application in the measurement of grain size, phase/volume fraction, delta ferrite and retained austenite, inclusion rating, depth of carburization/decarburization, scale thickness, pearlite banding, microhardness, and hardness profiles. The chapter concludes with a brief discussion on the effect of scaling and deposition and how to measure it.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630101
EISBN: 978-1-62708-270-9
... with a scanning electron microscope at a magnification of 1000×. A fairly accurate, but exaggerated, analogy to the phenomenon of microvoid coalescence and plastic deformation on a microscopic scale involves pizza on a macroscopic scale. When a slice of hot pizza is pulled away from its neighbor, the hot...
Abstract
Ductile fracture results from the application of an excessive stress to a metal that has the ability to deform permanently, or plastically, prior to fracture. Careful examination and knowledge of the metal, its thermal history, and its hardness are important in determining the correct nature of the fracture features. This chapter is a detailed account of the general characteristics and microstructural aspects of ductile fracture with suitable illustrations. It describes some of the complicating factors extraneous to the fracture itself.
1