Skip Nav Destination
Close Modal
Search Results for
scanning electron microscopy (SEM)
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 179 Search Results for
scanning electron microscopy (SEM)
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 23 January 2020
DOI: 10.31399/asm.tb.stemsem.9781627082921
EISBN: 978-1-62708-292-1
Image
Published: 30 September 2023
Figure 7.16: Rolled aluminum strip surface as viewed by (a) optical microscopy and (b) scanning electron microscopy (SEM).
More
Image
Published: 01 January 2000
Fig. 22 Filiform corrosion of PVC-coated aluminum foil. (a) Advancing head and cracked tail section of a filiform cell. Scanning electron microscopy (SEM), 80×. (b) The gelatinous corrosion products of aluminum oozing out of the porous end tail section of a filiform cell. SEM. 830×. (c) Tail
More
Image
in Intermetallic Phases in Aluminum-Silicon Technical Cast Alloys
> Aluminum-Silicon Casting Alloys: Atlas of Microstructures
Published: 01 December 2016
Fig. 2.8 Microstructure of the AlSi9Cu alloy, particles of the θ Cu phase, in (αAl + θ Cu + β MgSi + Si) eutectic, etch. Weck-1. Source: Ref 18 . (a) LM. (b) Scanning electron microscopy (SEM); in eutectic melting area (αAl + θ Cu + Si + β MgSi + Q), etch. Wilcox(5), Source: Ref 12 . (c
More
Image
in Cast Aluminum-Silicon Alloy—Phase Constituents and Microstructure
> Aluminum-Silicon Casting Alloys: Atlas of Microstructures
Published: 01 December 2016
Fig. 1.3 Endogenous dendrite grains of αAl solid solution. (a) Dendrite grains and visible dendrite axis: primary and those of next orders. (b) Morphology of the dendrite branches. Scanning electron microscopy (SEM)
More
Image
in Microstructure of Aluminum-Silicon Technical Casting Alloys
> Aluminum-Silicon Casting Alloys: Atlas of Microstructures
Published: 01 December 2016
Fig. 3.3 Microstructure of alloy AlSi7Mg, sand mold, wall thickness 3 cm. (a–e) Silicon in the interdendritic eutectic. (f) Enlarged microregion visible in (e), showing silicon lamellae in the interdendritic eutectic. Scanning electron microscopy (SEM), deep etch
More
Image
Published: 01 August 2005
Fig. 3.19 Fully pearlitic steel fatigue fracture surfaces. Crack growth direction is from left to right in both images. (a) Intermediate crack growth rate (~0.1 μm/cycle), and (b) low crack growth rate (~0.001 μm/cycle). No fatigue striations were resolved by scanning electron microscopy (SEM
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270152
EISBN: 978-1-62708-301-0
... failure. aileron control cable scanning electron microscopy SEM fractography visual examination Summary The aileron control cable of an aircraft had failed. It was found damaged. Investigation revealed that the cable had been damaged by a shearing tool. Background The cable...
Abstract
This chapter discusses the failure of an aileron control cable in an aircraft and explains how investigators determined the cause. Based on their observations and the results of SEM fractography, investigators concluded that the cable had been damaged by a shearing tool, leading to its failure.
Book: STEM in SEM Introduction to Scanning Transmission Electron Microscopy for Microelectronics Failure
Series: ASM Technical Books
Publisher: ASM International
Published: 23 January 2020
DOI: 10.31399/asm.tb.stemsem.t56000020
EISBN: 978-1-62708-292-1
..., carbon nanotubes, zeolite sheets, and monolayer graphene. It also describes emerging techniques, including four-dimensional STEM, thermal diffuse scattering, energy filtering, aberration correction, and atomic resolution imaging. diffraction imaging scanning electron microscopy (SEM) scanning...
Abstract
This chapter discusses the setup and use of a transmission electron detector in a typical scanning electron microscope (SEM). It describes the arrangement and function of the primary components in the detector, following the signal path from the sample to a micromirror array where it is directed by the user to either a CMOS sensor (to record diffraction patterns) or a photomultiplier tube (to observe real-space images). The chapter discusses some of the nuances of digital imaging and diffraction and includes examples in which transmission electron detectors are used to analyze gold films, carbon nanotubes, zeolite sheets, and monolayer graphene. It also describes emerging techniques, including four-dimensional STEM, thermal diffuse scattering, energy filtering, aberration correction, and atomic resolution imaging.
Book: STEM in SEM Introduction to Scanning Transmission Electron Microscopy for Microelectronics Failure
Series: ASM Technical Books
Publisher: ASM International
Published: 23 January 2020
DOI: 10.31399/asm.tb.stemsem.t56000001
EISBN: 978-1-62708-292-1
... Abstract This chapter discusses the principles of scanning transmission electron microscopy (STEM) as implemented using conventional scanning electron microscopes (SEMs). It describes the pros and cons of low-energy imaging and diffraction, addresses basic hardware requirements, and provides...
Abstract
This chapter discusses the principles of scanning transmission electron microscopy (STEM) as implemented using conventional scanning electron microscopes (SEMs). It describes the pros and cons of low-energy imaging and diffraction, addresses basic hardware requirements, and provides information on imaging modes, detector positioning and alignment, and the effect of contrast reversal. It also discusses beam convergence and angular selectivity, the use of application-specific masks, and how to generate grain orientation maps for different material systems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270113
EISBN: 978-1-62708-301-0
.... The chapter provides several recommendations to avoid such failures in the future. cadmium plating chemical analysis elevator hinge pins fractography hydrogen embrittlement scanning electron microscopy SEM fractography Summary In an aircraft that was retrieved from the sea, the hinge pins...
Abstract
An aircraft went down over water some 30 minutes into a flight. The wreckage was retrieved and the elevator linkage components were dismantled, cleaned, and reassembled. As the chapter explains, both the port and starboard hinge pins had fractured at a tack welded joint along a flange. Based on visual examination, SEM fractography, and chemical analysis, investigators concluded that the hinge pins were not made from the specified steel and were not properly treated after cadmium plating. The pins failed due to hydrogen embrittlement, which may have been aggravated by welding. The chapter provides several recommendations to avoid such failures in the future.
Image
in About the Authors
> STEM in SEM<subtitle>Introduction to Scanning Transmission Electron Microscopy for Microelectronics
Published: 23 January 2020
Holm
More
Image
in About the Authors
> STEM in SEM<subtitle>Introduction to Scanning Transmission Electron Microscopy for Microelectronics
Published: 23 January 2020
Caplins
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2023
DOI: 10.31399/asm.tb.edfatr.t56090109
EISBN: 978-1-62708-462-8
...-of-the-line (BEOL) levels often need higher scanning electron microscopy (SEM) e-beam accelerating voltage and thus need to be evaluated. Signal-to-noise ratio improvements of EBAC/EBIC/EBIRCH sensing electronics will also be needed. Nanoprobing tools need to continuously improve on reducing e-beam impact...
Abstract
The first step in die-level failure analysis is to narrow the search to a specific circuit or transistor group. Then begins the post-isolation process which entails further localizing the defect, determining its electrical, physical, and chemical properties, and examining its microstructure in order to identify the root cause of failure. This chapter assesses the tools and techniques used for those purposes and the challenges brought on by continued transistor scaling, advanced 3D packages, and new IC architectures. The areas covered include sample preparation, nanoprobing, microscopy, FIB circuit edit, and scanning probe microscopy.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2023
DOI: 10.31399/asm.tb.edfatr.t56090131
EISBN: 978-1-62708-462-8
... in the following categories: 1) defect detection and classification; 2) noise reduction in scanning electron microscopy (SEM), transmission electron microscopy (TEM), scanning acoustic microscopy (SAM), and X-ray images; 3) failure mode identification by clustering and pattern recognition; and 4) failure analysis...
Abstract
This chapter assesses the potential impact of neural networks on package-level failure analysis, the challenges presented by next-generation semiconductor packages, and the measures that can be taken to maximize FA equipment uptime and throughput. It presents examples showing how neural networks have been trained to detect and classify PCB defects, improve signal-to-noise ratios in SEM images, recognize wafer failure patterns, and predict failure modes. It explains how new packaging strategies, particularly stacking and disintegration, complicate fault isolation and evaluates the ability of various imaging methods to locate defects in die stacks. It also presents best practices for sample preparation, inspection, and navigation and offers suggestions for improving the reliability and service life of tools.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040055
EISBN: 978-1-62708-428-4
... gray pixels. Thresholding of the pores across the higher gamma image was more uniform and the measured pore fraction of 5.0 area% was judged the most accurate. Scanning Electron Microscopy (SEM) SEM images represent energy interaction between the sample and impinging electrons; the materials...
Abstract
Thermal barrier coatings (TBCs) are applied using thermal spray coating (TSC) processes to components that are internally cooled and operated in a heated environment. The TSC microstructures are prone to interactions with common metallographic procedures that may result in artifacts and misinterpretation of the TSC microstructure. This article aims to aid in identifying metallographic TSC artifacts, specifically in the air plasma spray zirconia-based TBC, including both of its common constituents, the bond coating and the top coating. Artifacts that result from specific sectioning and mounting practices, as well as from different polishing times, are presented. Additionally, the article discusses the factors in optical microscopy and scanning electron microscopy that affect microstructure interpretation.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430107
EISBN: 978-1-62708-253-2
... categories into which different material characterization techniques are grouped are ( Ref 5.1 ): Techniques based on microscopy principles such as optical microscopy, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and focused ion beam microscopy. Techniques based...
Abstract
This chapter describes some of the most effective tools for investigating boiler tube failures, including scanning electron microscopy, optical emission spectroscopy, atomic absorption spectroscopy, x-ray fluorescence spectroscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. It explains how the tools work and what they reveal. It also covers the topic of image analysis and its application in the measurement of grain size, phase/volume fraction, delta ferrite and retained austenite, inclusion rating, depth of carburization/decarburization, scale thickness, pearlite banding, microhardness, and hardness profiles. The chapter concludes with a brief discussion on the effect of scaling and deposition and how to measure it.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220085
EISBN: 978-1-62708-259-4
... is still the most appropriate approach for fine precipitates and fine phase dispersions. Dislocations and their orientations in a crystal can be observed and identified. 6.3 Scanning Transmission Electron Microscopy Like a SEM, scanning transmission electron microscopy (STEM) uses a finely...
Abstract
This chapter discusses the use of electron microscopy in metallographic analysis. It explains how electrons interact with metals and how these interactions can be harnessed to produce two- and three-dimensional images of metal surfaces and generate crystallographic and compositional data as well. It discusses the basic design and operating principles of scanning electron microscopes, transmission electron microscopes, and scanning transmission electron microscopes and how they are typically used. It describes the additional information contained in backscattered electrons and emitted x-rays and the methods used to access it, namely wavelength and energy dispersive spectroscopy and electron backscattering diffraction techniques. It also describes the role of focused ion beam milling in sample preparation and provides information on atom probes, atomic force microscopes, and laser scanning microscopes.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2024
DOI: 10.31399/asm.tb.pmamfa.t59400027
EISBN: 978-1-62708-479-6
... of crystallization, Δ H f cry is the enthalpy of fusion of the pure sample in crystalline form, and m is the mass of the sample. Microstructure Study The microstructure of powder can be studied by field emission scanning electron microscopy (FESEM), scanning electron microscopy (SEM), or transmission...
Abstract
This chapter explains how to measure the shape, size, microstructure, and composition of powders as well as their flowability and crystallization behavior. It presents detailed workflows and calculations based on SEM, TEM, FESEM, and STEM imaging, x-ray diffraction, differential scanning calorimetry, EDS and EELS spectroscopy, and powder sieving. It also discusses the measurement of crystallite size, lattice mismatch, and crystallinity and the relationship between surface area and flowability.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720139
EISBN: 978-1-62708-305-8
... Techniques Nonsurface Specific Methods Nonsurface specific methods include scanning electron microscopy (SEM), electron probe microanalysis (EPMA), and transmission electron microscopy (TEM). Scanning Electron Microscopy, Electron Probe Microanalysis (SEM, EPMA) These methods are better...
Abstract
The overall chemical composition of metals and alloys is most commonly determined by x-ray fluorescence (XRF) and optical emission spectroscopy (OES). High-temperature combustion and inert gas fusion methods are typically used to analyze dissolved gases (oxygen, nitrogen, and hydrogen) and, in some cases, carbon and sulfur in metals. This chapter discusses the operating principles of XRF, OES, combustion and inert gas fusion analysis, surface analysis, and scanning auger microprobe analysis. The details of equipment set-up used for chemical composition analysis as well as the capabilities of related techniques of these methods are also covered.
1