Skip Nav Destination
Close Modal
By
Rebecca D. Dar, Efrat Moyal, Janet Teshima
By
Christian Schmidt, Yan Li, Bernice Zee, Rohin Agny, Renee Parente ...
By
George Fulton, Alfred Goldberg, Frank Gibbs, Curtis Salmon
By
George Fulton, Alfred Goldberg
By
Zhongling Qian, Christof Brillert
By
Tejinder Gandhi, Jason Silva
By
Susan Xia Li
By
David E. Grosjean
Search Results for
sample handling
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 355
Search Results for sample handling
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Cross-Sectioning: Scribing and Cleaving
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110402
EISBN: 978-1-62708-247-1
..., and cleaving. The article also provides information on options for mounting, handling, and cleaning of samples during and after the cleaving process. The general procedures, tools required, and considerations that need to be taken into account to perform these techniques are considered. cleaving cross...
Abstract
Cross-sectioning refers to the process of exposing the internal layers and printed devices below the surface by cleaving through the wafer. This article discusses in detail the steps involved in common cross-sectioning methods. These include sample preparation, scribing, indenting, and cleaving. The article also provides information on options for mounting, handling, and cleaning of samples during and after the cleaving process. The general procedures, tools required, and considerations that need to be taken into account to perform these techniques are considered.
Book Chapter
Package Innovation Roadmap
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2023
DOI: 10.31399/asm.tb.edfatr.t56090131
EISBN: 978-1-62708-462-8
... fault isolation machine learning neural networks sample handling stacking tool life Introduction to Packaging Technology The semiconductor industry is now relying on breakthrough innovation and investment in advanced packaging as silicon technology scaling encounters barriers moving forward...
Abstract
This chapter assesses the potential impact of neural networks on package-level failure analysis, the challenges presented by next-generation semiconductor packages, and the measures that can be taken to maximize FA equipment uptime and throughput. It presents examples showing how neural networks have been trained to detect and classify PCB defects, improve signal-to-noise ratios in SEM images, recognize wafer failure patterns, and predict failure modes. It explains how new packaging strategies, particularly stacking and disintegration, complicate fault isolation and evaluates the ability of various imaging methods to locate defects in die stacks. It also presents best practices for sample preparation, inspection, and navigation and offers suggestions for improving the reliability and service life of tools.
Book Chapter
Specimen Preparation for Light Microscopy
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850060
EISBN: 978-1-62708-260-0
... the microstructure for a substantial distance from the cut, one should burn well away from the area of interest and do subsequent sectioning with standard machining techniques. Reasonably small-sized samples can be handled with equipment found in a typical metallographic laboratory, such as a shear, band saw...
Abstract
This chapter explains how to prepare metallographic samples for light microscopy and how to anticipate and avoid related problems. It describes standard practices and procedures for sectioning, mounting, grinding, and polishing and identifies common defects along with their causes and cures. It also provides recommendations for handling specific materials and addresses safety concerns.
Book Chapter
Surface Analysis
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780383
EISBN: 978-1-62708-281-5
... produced from each, and some typical applications. Table 4 summarizes the different features of these techniques to allow for at-a-glance comparisons. Also discussed are the different types of samples that can be analyzed and the special sample-handling procedures that must be implemented when preparing...
Abstract
This article covers common techniques for surface characterization, including the modern scanning electron microscopy and methods for the chemical characterization of surfaces by Auger electron spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry. The principles of surface analysis and some of the applications of the technique in polymer failure studies are also provided.
Book Chapter
Hygienic Practices for Handling Beryllium and Its Components
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230513
EISBN: 978-1-62708-298-3
... Abstract This chapter covers regulatory requirements, safe handling practices, hazard analysis and control, dismantling and decommissioning, and waste disposal. It also includes references for additional information on government regulations. beryllium hygienic practices 29.1...
Abstract
This chapter covers regulatory requirements, safe handling practices, hazard analysis and control, dismantling and decommissioning, and waste disposal. It also includes references for additional information on government regulations.
Book Chapter
Sand and Metal Charge Storage and Handling
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 November 2023
DOI: 10.31399/asm.tb.ceeg.t59370013
EISBN: 978-1-62708-447-5
... Abstract Sand and metallic charge materials are two essential and heavy raw materials that are needed for molding and casting. This chapter focuses on planning and provision for storage and handling of the raw materials needed for casting manufacturing. The major raw materials used for molding...
Abstract
Sand and metallic charge materials are two essential and heavy raw materials that are needed for molding and casting. This chapter focuses on planning and provision for storage and handling of the raw materials needed for casting manufacturing. The major raw materials used for molding and casting are metallic charge materials and nonmetallic materials. The chapter also presents the advantages, limitations, and applications of drum or rotary dryers (also known as rotary kiln dryers) and fluidized bed dryers (also known as vibration fluidized bed dryers).
Book Chapter
Examination of the Nitrided Case
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900167
EISBN: 978-1-62708-350-8
... Abstract Examining and evaluating the nitrided case is generally accomplished by hardness testing and microscopic examination. This chapter discusses both characterization methods, as well as sample preparation. The chapter also discusses the processes involved in the etching of the sample...
Abstract
Examining and evaluating the nitrided case is generally accomplished by hardness testing and microscopic examination. This chapter discusses both characterization methods, as well as sample preparation. The chapter also discusses the processes involved in the etching of the sample after microhardness testing and provides practices that contribute to the safe preparation of specimens. Examples of nitrided case microstructures, using optical light microscopy, are also presented.
Book Chapter
The Metallographer and the Metallographic Laboratory
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400087
EISBN: 978-1-62708-258-7
.... It all began with Henry Clifton Sorby on July 28, 1863. Sorby, whose photograph can be seen in Fig. 4.1 , was an English geologist, petrographer, and mineralogist who was the first person to examine polished and chemically etched metal samples under the microscope. His samples included Swedish wrought...
Abstract
This chapter discusses the important role of metallography and the metallographer in predicting and understanding the properties of metals and alloys. Examples are presented of a metallographer working as part of a team in a research laboratory of a large steel company and a metallographer working alone at a small iron foundry. The three basic areas in all metallography laboratories are discussed: the specimen preparation area, the polishing/etching area, and the observation/micrography area. Important safety issues in a metallographic laboratory are also considered.
Book Chapter
Materials Testing Fundamentals
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 15 June 2021
DOI: 10.31399/asm.tb.mpktmse.t56010001
EISBN: 978-1-62708-384-3
.... Loading happens by turning the handles on the grips to open the wedges, inserting the sample, and then tightening the grips. While testing, the wedges are pulled down and continually tightened on the sample, preventing it from slipping. Fig. 4 Wedge grip used for sheet metal and hard plastics...
Abstract
Product design requires an understanding of the mechanical properties of materials, much of which is based on tensile testing. This chapter describes how tensile tests are conducted and how to extract useful information from measurement data. It begins with a review of the different types of test equipment used and how they compare in terms of loading force, displacement rate, accuracy, and allowable sample sizes. It then discusses the various ways tensile measurements are plotted and presents examples of each method. It examines a typical load-displacement curve as well as engineering and true stress-strain curves, calling attention to certain points and features and what they reveal about the test sample and, in some cases, the cause of the behavior observed. It explains, for example, why some materials exhibit discontinuous yielding while others do not, and in such cases, how to determine when yielding begins. It also explains how to determine other properties via tensile tests, including ductility, toughness, and modulus of resilience.
Book Chapter
Materials Handling
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 1988
DOI: 10.31399/asm.tb.eihdca.t65220253
EISBN: 978-1-62708-341-6
... Abstract Because of its speed and ease of control, induction heating can be readily automated and integrated with other processing steps such as forming, quenching, and joining. Completely automated heating/handling/control systems have been developed and are offered by induction equipment...
Abstract
Because of its speed and ease of control, induction heating can be readily automated and integrated with other processing steps such as forming, quenching, and joining. Completely automated heating/handling/control systems have been developed and are offered by induction equipment manufacturers. This chapter deals with materials handling and automation. First, it summarizes basic considerations such as generic system designs, fixture materials, and special electrical problems to be avoided. Next, it describes and provides examples of materials-handling systems in induction billet heating, bar heating, heat treatment, soldering, brazing, and other induction-based processes. The final section discusses the use of robots for parts handling in induction heating systems.
Book Chapter
Medical Aspects of the Toxicity of Beryllium and Beryllium Alloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230499
EISBN: 978-1-62708-298-3
... be monitored in the person’s breathing zone and workplace (environment). If airborne-particulate concentrations exceed accepted limits, approved and fitted respirators must be used. Sampling surfaces by swiping should also be done. Gloves should be used when handling materials having sharp edges, rough...
Abstract
Beryllium-related lung diseases were first reported in the 1930s, several years after the emergence of beryllium metals in manufactured products. Since then, there have been numerous studies around the world and continued refinement of recommendations and safety standards. This chapter provides a summary of the studies that have been conducted along with the findings. It discusses the effects of acute and chronic exposure, toxicity levels, potential sources and risks, treatment, and protective and preventive measures.
Book Chapter
Systems-Level: Development and Challenges of Solid Immersion Lens
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2023
DOI: 10.31399/asm.tb.edfatr.t56090083
EISBN: 978-1-62708-462-8
..., the mobile DSIL with a Si substrate shows better handling of a moveable SIL to the required position ( Ref 6 ). Fig. 2 Progression from SIL directly formed by etching on the Si substrate using the combination of FIB and active plasma etching ( Ref 4 – 6 ). Left: Binary approximation of Fresnel lens...
Abstract
This chapter assesses the benefits of using a solid immersion lens (SIL) to detect faults in ICs via optical imaging and laser-stimulation techniques. It discusses the advantages and limitations of different types of SILs and their effect on spatial resolution, spot size, focus depth, and collection efficiency. It also provides a brief overview of technical challenges at the die level.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.htpa.t53310067
EISBN: 978-1-62708-346-1
... Today, the classical stationary hardness testing methods according to Brinell, Vickers, and Rockwell are well established. However, as soon as very large samples or samples that are unmanageable and difficult to test in conventional testing machines are used, practical and (as much as possible) portable...
Abstract
In dynamic hardness tests, the test force is applied to the defined indenter in an accelerated way (with a high application rate). Dynamic test methods relate hardness to the elastic response of a material, whereas the classical static indentation tests determine hardness in terms of plastic behavior. This chapter describes the most important and widespread dynamic hardness testing methods. These tests fall into two categories: methods in which the deformation is measured and methods in which the energy is measured. Methods that measure deformation include the Poldi hammer method, the shearing force method, the Baumann hammer method, and the Dynatest method. Methods that measure energy include the Shore method, the Leeb method, and the Nitronic method. The chapter concludes with a discussion of applications of dynamic hardness testing.
Book Chapter
Package Failure Analysis: Flow and Technique
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110010
EISBN: 978-1-62708-247-1
... analysis) handling and electrical testing can damage a device, a complete suite of non-destructive investigations is performed on the as-received units. External Optical Inspection A thorough optical inspection is always the first procedure performed on the devices; results can be reviewed later...
Abstract
As semiconductor feature sizes have shrunk, the technology needed to encapsulate modern integrated circuits has expanded. Due to the various industry changes, package failure analyses are becoming much more challenging; a systematic approach is therefore critical. This article proposes a package failure analysis flow for analyzing open and short failures. The flow begins with a review of data on how the device failed and how it was processed. Next, non-destructive techniques are performed to document the condition of the as-received units. The techniques discussed are external optical inspection, X-ray inspection, scanning acoustic microscopy, infrared (IR) microscopy, and electrical verification. The article discusses various fault isolation techniques to tackle the wide array of failure signatures, namely IR lock-in thermography, magnetic current imaging, time domain reflectometry, and electro-optical terahertz pulse reflectometry. The final step is the step-by-step inspection and deprocessing stage that begins once the defect has been imaged.
Book Chapter
Binder Formulation
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290067
EISBN: 978-1-62708-319-5
... points ( L > G ). The four-point strength averages 14% higher, largely because the stress is distributed over a larger sample volume. Strengths of 20 MPa (3.0 ksi) are typical for green bodies. To provide a meaningful sense of handling strength, consider a chicken egg that fails when squeezed...
Abstract
This chapter provides details on several specific binder formulations and a discussion of basic binder design concepts. The focus is on customization of the feedstock response to heating, pressurization, or solvent exposure for a specific shaping process. The discussion starts with the requirements of a binder system, the historical progression of binder formulations, and the use of binder alternatives to adapt to specific applications. The importance of binder handling strength to shape preservation is emphasized. The chapter provides information on the binders used for room-temperature shaping, namely slurry and tape casting systems.
Book Chapter
Liquid Metal Corrosion and Embrittlement
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.htcma.t52080423
EISBN: 978-1-62708-304-1
..., along with their alloys, are readily attacked by molten aluminum. Extremely high corrosion rates of iron-, nickel-, and cobalt-base alloys in molten aluminum are illustrated by the laboratory test results shown in Table 16.1 ( Ref 11 ). Samples of carbon steel and iron-and nickel-base alloys were...
Abstract
Liquid metals are frequently used as a heat-transfer medium because of their high thermal conductivities and low vapor pressures. Containment materials used in such heat-transfer systems are subject to molten metal corrosion as well as other problems. This chapter reviews the corrosion behavior of alloys in molten aluminum, zinc, lead, lithium, sodium, magnesium, mercury, cadmium, tin, antimony, and bismuth. It also discusses the problem of liquid metal embrittlement, explaining how it is caused by low-melting-point metals during brazing, welding, and heat treating operations.
Book Chapter
Chip-Scale Packaging and Its Failure Analysis Challenges
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110016
EISBN: 978-1-62708-247-1
... handled during sample preparation. This method is particularly ideal for the devices that requires backside emission analysis. Figure 8 Milling and repackaging process for backside emission analysis on the failing die in MCP devices. IR Inspection on Wafer Level CSPs WLCSP is the fastest...
Abstract
Since the introduction of chip scale packages (CSPs) in the early 90s, they have continuously increased their market share due to their advantages of small form factor, cost effectiveness and PCB optimization. The reduced package size brings challenges in performing failure analysis. This article provides an overview of CSPs and their classification as well as their advantages and applications, and reveals some of the challenges in performing failure analysis on CSPs, particularly for CSPs in special package configurations such as stacked die multi-chip-packages (MCPs) and wafer level CSPs (WLCSPs). The discussion covers special requirements of CSPs such as precision decapsulation for fine ball grid array packages, accessing the failing die for MCP packages, and careful handling for WLCSP. Solutions and best practices are shared on how to overcome these challenges. The article also presents a few case studies to demonstrate how failure analysis work on CSPs can be successfully completed.
Book Chapter
Failure Analysis Methodology
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270019
EISBN: 978-1-62708-301-0
... in the wreckage and in the original structure must be recorded. Any other samples that can provide secondary or additional evidence must also be collected. The fracture surfaces must be handled very carefully because they can provide a fund of useful information about the mode and mechanism of fracture during...
Abstract
This chapter discusses the basic steps of a failure investigation. It explains that the first step is to gather and document information about the failed component and its operating history. It advises investigators to visit the failure site as soon as possible to record damages and collect test specimens for subsequent examination and chemical analysis. It also discusses the role of mechanical property testing, the use of nondestructive evaluation, and the final step of generating a report.
Book Chapter
Failure Analysis Techniques and Methods for Microelectromechanical Systems (MEMS)
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110563
EISBN: 978-1-62708-247-1
... them. The chapter also provides information on the testing of MEMS devices. It covers the two common challenges in sample preparation for MEMS: decapping, or opening up the package, without disturbing the MEMS elements; and removing MEMS elements for analysis. Finally, the chapter discusses the aspects...
Abstract
This chapter discusses the various failure analysis techniques for microelectromechanical systems (MEMS), focusing on conventional semiconductor manufacturing processes and materials. The discussion begins with a section describing the advances in integration and packaging technologies that have helped drive the further proliferation of MEMS devices in the marketplace. It then shows some examples of the top MEMS applications and quickly discusses the fundamentals of their workings. The next section describes common failure mechanisms along with techniques and challenges in identifying them. The chapter also provides information on the testing of MEMS devices. It covers the two common challenges in sample preparation for MEMS: decapping, or opening up the package, without disturbing the MEMS elements; and removing MEMS elements for analysis. Finally, the chapter discusses the aspects of failure analysis techniques that are of particular interest to MEMS.
Book Chapter
Stainless Steel Applications
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 June 2010
DOI: 10.31399/asm.tb.hss.t52790193
EISBN: 978-1-62708-356-0
... Abstract Stainless steels have a wide variety of applications for household products, food-handling equipment, major appliances, medical equipment, and industrial equipment. Stainless is also featured in many architectural designs and monuments. Many of the most important applications...
Abstract
Stainless steels have a wide variety of applications for household products, food-handling equipment, major appliances, medical equipment, and industrial equipment. Stainless is also featured in many architectural designs and monuments. Many of the most important applications of stainless steel can be found in the transportation industry, where both the cutlery martensitic and the chromium-nickel austenitic stainless steels have been used. This chapter provides a detailed discussion on these applications.
1