Skip Nav Destination
Close Modal
Search Results for
salt bath nitriding
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 183
Search Results for salt bath nitriding
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900053
EISBN: 978-1-62708-350-8
... Abstract This chapter presents the salts used and the process advantages of salt bath nitriding. It describes bath testing and analysis including the materials and equipment, analysis procedure, and determination of sodium carbonate and sodium cyanate for titration testing of the nitriding salt...
Abstract
This chapter presents the salts used and the process advantages of salt bath nitriding. It describes bath testing and analysis including the materials and equipment, analysis procedure, and determination of sodium carbonate and sodium cyanate for titration testing of the nitriding salt bath. The chapter explains the procedures for maintenance of the salt bath and related equipment. It also discusses safety precautions and design parameters for furnace equipment.
Image
Published: 01 December 2003
Fig. 1 Principal furnace types for liquid salt bath nitriding. (a) and (b) Externally heated. (c) and (d) Internally heated, with immersed alloy electrodes and metal liner or submerged electrodes with ceramic tile lining
More
Image
Published: 01 December 2003
Fig. 2 Ferritic nodular iron, salt bath nitrided 90 min at 580 °C (1075 °F), oxidizing molten salt quenched. 500×, nital etch. Courtesy of Kolene Corp.
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900163
EISBN: 978-1-62708-350-8
... Abstract Stop-off coatings prevent nitriding of selected areas on components. This chapter discusses the processes, advantages, and disadvantages of stop-off techniques for gas nitriding, salt bath nitriding, and ion nitriding. gas nitriding ion nitriding salt bath nitriding stop-off...
Abstract
Stop-off coatings prevent nitriding of selected areas on components. This chapter discusses the processes, advantages, and disadvantages of stop-off techniques for gas nitriding, salt bath nitriding, and ion nitriding.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900185
EISBN: 978-1-62708-350-8
... Abstract This chapters reviews the various process, material, and post-treatment problems that can occur in nitriding and how to troubleshoot them. The troubleshooting methods discussed relate to gas nitriding, salt bath nitriding, and ion nitriding. gas nitriding ion nitriding salt...
Abstract
This chapters reviews the various process, material, and post-treatment problems that can occur in nitriding and how to troubleshoot them. The troubleshooting methods discussed relate to gas nitriding, salt bath nitriding, and ion nitriding.
Image
Published: 01 December 2003
Fig. 3 SAE 5115 (UNS G51150), chromium-manganese low-carbon steel, salt bath nitrided 90 min at 580 °C (1075 °F), oxidizing molten salt quenched. 500×, nital etch. Courtesy of Kolene Corp.
More
Image
Published: 01 December 1999
by the relative radius of curvature. Steel Effective case depth, mm (in.) Through hardened (various) ... Flame hardened (PCS) ... Induction hardened (4340) 3.75(0.15) Gas nitrided and salt-bath nitrided 0.14(0.005) Sulphinuz treated 0.17(0.007) Gas nitrided (80 h) (3%Cr-Mo) 0.35
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900153
EISBN: 978-1-62708-350-8
... 2 to 12%, they are distinguished by their principal alloying element. All can be readily processed via gas nitriding, salt bath nitriding, or ion nitriding. Forging Dies Selection of a hot-work steel grade depends on the forge die application. For many forging steel applications, the steel...
Abstract
The nitriding process can be applied to various materials and part geometries. This chapter focuses on tool steels, pure irons, low-alloy steels, and maraging steels. Various considerations such as the surface metallurgy requirements of the die, including case depth, compound layer formation, and temperature, are also discussed in this chapter. The chapter also addresses steel selection and surface metallurgy of gears.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440141
EISBN: 978-1-62708-262-4
... control of case chemistry and has other advantages, such as lower part distortion than conventional (gas) nitriding. A key difference between gas and ion nitriding is the mechanism used to generate nascent nitrogen at the surface of the work. Reference 14 provides additional information. Salt Bath...
Abstract
This chapter discusses hardening processes that involve changes in surface composition. These case hardening treatments are broadly classified into four groups: carburizing, carbonitriding, nitriding, and nitrocarburizing. Key parameters and operating considerations for each treatment are discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900201
EISBN: 978-1-62708-350-8
... the nitriding procedure, generally in the region of 540 to 625 °C (1000 to 1155 °F). Case depth, once again, depends on the residence time at the selected process temperature. Early work was reported by Professor Tom Bell on the Sulfinuz salt bath process, which was based on the diffusion of cyanide-based...
Abstract
This chapter provides a detailed discussion of salt bath nitrocarburizing. Process variations discussed include low-cyanide salt bath ferritic nitrocarburizing, salt bath nitrocarburizing plus post treatment, and the Kolene Nu-Tride process.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900111
EISBN: 978-1-62708-350-8
... nitriding, salt bath nitriding, and plasma ion nitriding. Each of these procedures is conducted at a process temperature of approximately 500 °C (930 °F). The fluidized-bed furnace uses ammonia gas for its nitrogen source, whereas the salt bath uses cyanide. Fluidized-bed nitriding is similar in process...
Abstract
A fluidized-bed furnace system can be used for the gas nitriding process. This chapter focuses on fluidized-bed nitriding. It discusses the methods of heating a fluidized bed. The heating system can be electrical or gas, and internal or external. The chapter describes nitriding and oxynitriding processes in the fluidized-bed furnace. It also explains how to operate the fluid bed for nitriding. The chapter provides a discussion on the measurement of the gas dissociation.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900001
EISBN: 978-1-62708-350-8
... purpose. Salt Bath Nitriding Shortly after the development of gas nitriding, alternative methods of nitriding were sought. One such method was the use of molten salt as a nitrogen source. The salt bath process uses the principle of the decomposition of cyanide to cyanate and the liberation...
Abstract
This chapter discusses the metallurgical considerations and process requirements of nitriding. It presents the pioneering work of Adolph Machlet and Adolph Fry and presents early developments. One such development is the Floe process, a two-stage treatment used to reduce the formation of a compound layer on the surface of a nitrided steel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2024
DOI: 10.31399/asm.tb.phtpp.t59380153
EISBN: 978-1-62708-456-7
... Abstract This chapter details suitable steels for gas nitriding and discusses conventional gas nitriding, plasma (Ion) nitriding, the ferritic nitrocarburizing processes, gaseous ferritic nitrocarburizing, plasma nitrocarburizing, and the salt-bath ferritic nitrocarburizing processes...
Abstract
This chapter details suitable steels for gas nitriding and discusses conventional gas nitriding, plasma (Ion) nitriding, the ferritic nitrocarburizing processes, gaseous ferritic nitrocarburizing, plasma nitrocarburizing, and the salt-bath ferritic nitrocarburizing processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900219
EISBN: 978-1-62708-350-8
... Abstract Gaseous ferritic nitrocarburizing, like salt bath nitrocarburizing, involves the introduction of carbon and nitrogen into steel in order to produce a thin layer of iron carbonitride and nitrides, the "white layer" or compound layer, with an underlying diffusion zone containing...
Abstract
Gaseous ferritic nitrocarburizing, like salt bath nitrocarburizing, involves the introduction of carbon and nitrogen into steel in order to produce a thin layer of iron carbonitride and nitrides, the "white layer" or compound layer, with an underlying diffusion zone containing dissolved nitrogen and iron (or alloy) nitrides. This chapter first presents the development and principles of the process. It then discusses the properties of gaseous ferritic nitrocarburized components. The chapter also presents the applications for the ferritic nitrocarburizing process. It provides an overview of the safety considerations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900231
EISBN: 978-1-62708-350-8
... Abstract This chapter discusses equipment used for ferritic nitrocarburizing, including salt bath furnaces, atmosphere furnaces, and plasma furnaces. It also describes the processes involved in ferritic oxynitrocarburizing. atmosphere furnaces ferritic nitrocarburizing plasma furnaces...
Abstract
This chapter discusses equipment used for ferritic nitrocarburizing, including salt bath furnaces, atmosphere furnaces, and plasma furnaces. It also describes the processes involved in ferritic oxynitrocarburizing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410551
EISBN: 978-1-62708-265-5
... This chapter describes surface modification processes that go beyond conventional heat treatments, including plasma nitriding, plasma carburizing, low-pressure carburizing, ion implantation, physical and chemical vapor deposition, salt bath coating, and transformation hardening via high-energy...
Abstract
This chapter describes surface modification processes that go beyond conventional heat treatments, including plasma nitriding, plasma carburizing, low-pressure carburizing, ion implantation, physical and chemical vapor deposition, salt bath coating, and transformation hardening via high-energy laser and electron beams. The chapter compares methods and includes several example applications.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900305
EISBN: 978-1-62708-358-4
... Abstract Surface modification technologies improve the performance of tool steels. This chapter discusses the processes involved in oxide coatings, nitriding, ion implantation, chemical and physical vapor deposition processing, salt bath coating, laser and electron beam surface modification...
Abstract
Surface modification technologies improve the performance of tool steels. This chapter discusses the processes involved in oxide coatings, nitriding, ion implantation, chemical and physical vapor deposition processing, salt bath coating, laser and electron beam surface modification, and boride coatings that improve the performance of hot-work and high-speed tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900193
EISBN: 978-1-62708-350-8
... methods of ferritic nitrocarburizing were accomplished in low-temperature (550 °C, or 1020 °F) salt baths working on the principle of the decomposition of cyanide to cyanate (in the ferrite region). Imperial Chemical Industries in England pioneered the salt bath process, which was called the “Sulfinuz...
Abstract
Ferritic nitrocarburizing accomplishes surface treatment of a part in the ferrite region of the iron-carbon equilibrium diagram. This chapter presents the history and process benefits of ferritic nitrocarburizing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2024
DOI: 10.31399/asm.tb.phtpp.t59380039
EISBN: 978-1-62708-456-7
... salts are used for austenitizing prior to quenching of alloy steels and tool steels, especially high-speed steels. Specialty Salt Baths Specialty salt baths include low-temperature salt-bath nitriding (at approximately 620 °C, or 1150 °F) and carburizing baths. Although most carburizing salt...
Abstract
This chapter discusses furnace atmospheres. It describes how furnace atmospheres protect metals, transfer heat, and supply alloying elements (carbon and nitrogen). The chapter focuses on the different types of atmospheres that are available to the heat treater: combustion products, air, exothermic, salt, nitrogen, endothermic, ammonia, hydrogen, inert gas, and vacuum.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900119
EISBN: 978-1-62708-350-8
... process uses molecular gases in any prescribed ratio that will create the required metallurgy best suited to the operating conditions of the part. The compound zone that results from gas nitriding or salt bath nitriding generally is composed of equal phases of γ′ and ε. The ion nitriding procedure...
Abstract
Distortion is defined as an irreversible and usually unpredictable dimensional change in a component due to thermal processing or temperature variations and loading in service. This chapter describes two types of distortion: size distortion and shape distortion. It addresses how distortion can be managed by controlling certain factors. The chapter discusses the cause and effect of distortion during nitriding, the processes involved in stock removal prior to nitriding, and the criteria for post-machining operations.
1