Skip Nav Destination
Close Modal
Search Results for
rough polishing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 277 Search Results for
rough polishing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030043
EISBN: 978-1-62708-349-2
... Abstract Rough grinding and polishing of mounted specimens are required to prepare the composite sample for optical analysis. This chapter describes these techniques for preparing composite materials. First, it provides information on grinding and polishing equipment and describes the processes...
Abstract
Rough grinding and polishing of mounted specimens are required to prepare the composite sample for optical analysis. This chapter describes these techniques for preparing composite materials. First, it provides information on grinding and polishing equipment and describes the processes and process variables for sample preparation. Then, the chapter discusses the processes of abrasive sizing for grinding and rough polishing. Next, it provides a summary of grinding methods, rough polishing, and final polishing. Finally, information on common polishing artifacts that can result from any of the steps is provided.
Image
in Metallographic Specimen Preparation
> Metallographer’s Guide: Practices and Procedures for Irons and Steels
Published: 01 March 2002
Fig. 7.40 Micrograph of ASTM A 36 steel plate rough polished with 6 μm diamond paste with insufficient pressure. Note the parallel deformation zones in some of the ferrite grains (see arrow). 2% nital etch. 100×
More
Image
in Avoidance, Control, and Repair of Fatigue Damage[1]
> Fatigue and Durability of Structural Materials
Published: 01 March 2006
Fig. 11.58 Fatigue durability of polished versus rough-finish and shot peened forked connecting rods. Source: Ref 11.70
More
Image
in Types of Wear and Erosion and Their Mechanisms
> Tribomaterials: Properties and Selection for Friction, Wear, and Erosion Applications
Published: 30 April 2021
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850060
EISBN: 978-1-62708-260-0
... Abstract This chapter explains how to prepare metallographic samples for light microscopy and how to anticipate and avoid related problems. It describes standard practices and procedures for sectioning, mounting, grinding, and polishing and identifies common defects along with their causes...
Abstract
This chapter explains how to prepare metallographic samples for light microscopy and how to anticipate and avoid related problems. It describes standard practices and procedures for sectioning, mounting, grinding, and polishing and identifies common defects along with their causes and cures. It also provides recommendations for handling specific materials and addresses safety concerns.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2018
DOI: 10.31399/asm.tb.msisep.t59220069
EISBN: 978-1-62708-259-4
... roughness, the factors that contribute to it, and its effect on image quality. It discusses the use of fixturing and holding devices, includes photographic examples of polishing defects and drying marks, and provides an overview of micrographic etchants and the features they reveal. It also describes...
Abstract
This chapter explains how to prepare material samples for optical microscopy, the most common method for characterizing the microstructure of cast iron and steel. It provides information on sectioning, mounting, polishing, etching, and recording. It describes the nature of surface roughness, the factors that contribute to it, and its effect on image quality. It discusses the use of fixturing and holding devices, includes photographic examples of polishing defects and drying marks, and provides an overview of micrographic etchants and the features they reveal. It also describes the steps involved in replicating part surfaces.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850543
EISBN: 978-1-62708-260-0
...). Other recipes in reference for specific Mg alloys (Haddrell, Ref. 39, Chap. 2). 1 part etch to 5 parts C-RO polishing compound. Use for 3-5 sec (Coons). Rough-polish with napped cloth on 1750 r/min wheel with solution 1. Use heavy pressure, recharge. Final polish with napped cloth on 250-500 r/min wheel...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030115
EISBN: 978-1-62708-349-2
... specimens of fiber-reinforced polymeric composites for examination by transmitted-light microscopy techniques. The preparation steps covered are a selection of the rough section, preparation of the rough section for preliminary mounting, grinding and polishing the primary-mount first surface, mounting...
Abstract
Transmitted-light methods reveal more details of the morphology of fiber-reinforced polymeric composites than are observable using any other available microscopy techniques. This chapter describes the various aspects relating to the selection and preparation of ultrathin-section specimens of fiber-reinforced polymeric composites for examination by transmitted-light microscopy techniques. The preparation steps covered are a selection of the rough section, preparation of the rough section for preliminary mounting, grinding and polishing the primary-mount first surface, mounting the first surface on a glass slide, and preparing the second surface (top surface). The optimization of microscope conditions and analysis of specimens by microscopy techniques are also covered. In addition, examples of composite ultrathin sections that are analyzed using transmitted-light microscopy contrast methods are shown throughout.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110391
EISBN: 978-1-62708-247-1
... during grinding and rough polishing. The newer dielectric materials are not mechanically strong and will separate under tension, introducing a defect in the sample. Grit Size Grinding papers and films are specified in grit sizes, which refer to the size of the particles on the paper/film. “Grit...
Abstract
Cross-sectioning is a technique used for process development and reverse engineering. This article introduces novice analysts to the methods of cross-sectioning semiconductor devices and provides a refresher for the more experienced analysts. Topics covered include encapsulated (potted) device sectioning techniques, non-encapsulated device techniques, utilization of the focused ion beam (FIB) making a cross-section and/or enhancing a physically polished one. Delineation methods for revealing structures are also discussed. These can be chemical etchants, chemo-mechanical polishing, and ion milling, either in the FIB or in a dedicated ion mill.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900167
EISBN: 978-1-62708-350-8
... samples and not multisampling. Hardness testing requires a polished, unscratched surface. This necessitates pregrinding. The pregrind involves an initial rough grind using 180-grit silicon carbide paper followed by intermediate pregrinding steps using 320-, 400-, and 500-grit papers. Do not spend too much...
Abstract
Examining and evaluating the nitrided case is generally accomplished by hardness testing and microscopic examination. This chapter discusses both characterization methods, as well as sample preparation. The chapter also discusses the processes involved in the etching of the sample after microhardness testing and provides practices that contribute to the safe preparation of specimens. Examples of nitrided case microstructures, using optical light microscopy, are also presented.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400169
EISBN: 978-1-62708-258-7
... Abstract This chapter instructs the metallographer on the basic skills required to prepare a polished metallographic specimen. It is organized in a chronological sequence starting with the information-gathering process on the material being investigated, then moving on to sectioning, mounting...
Abstract
This chapter instructs the metallographer on the basic skills required to prepare a polished metallographic specimen. It is organized in a chronological sequence starting with the information-gathering process on the material being investigated, then moving on to sectioning, mounting, grinding, and polishing processes, and ending with methods used to properly store metallographic specimens. The discussion covers the preparation procedures, the materials being investigated, and equipment used to perform these procedures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.t53030067
EISBN: 978-1-62708-349-2
... with the mounting resin and cured with the application of pressure. The mounted specimen can then be ground and polished as described in Chapter 3, “Rough Grinding and Polishing,” in this book. Preparation of other metallic honeycomb-cored composites will benefit from this technique as well as thin-walled ribbed...
Abstract
The most common methods for preparing polymeric composites for microscopic analysis can be used for most fiber-reinforced composite materials. There are, however, a few composite materials that require special preparation techniques. This chapter discusses the processes involved in the preparation of titanium honeycomb composites, boron fiber composites, titanium/polymeric composite hybrids, and uncured prepreg materials.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230199
EISBN: 978-1-62708-298-3
... by previous operations. The second procedure is perhaps slightly slower than the first and requires a more careful technique, but it eliminates the use of kerosene. The specimen is first ground wet on a 240-grit disc, followed by dry grinding on a 400-grit disc. In a third procedure, rough polishing...
Abstract
This chapter explains how to safely prepare beryllium alloy samples for metallographic analysis. It describes grinding, polishing, and etching procedures in detail. It also discusses the identification of major and minor constituents and the general appearance of beryllium microstructure.
Image
Published: 01 December 2006
Fig. 5.21 Influence of the finish of the bearing surface on the quality of the section surface [ Tok 88 ] No. Finish Roughness, μm Billet temperature, °C 1 Ground parallel in direction of extrusion 1.50–1.75 450 2 Ground parallel in direction of extrusion 0.50–0.75 450
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720161
EISBN: 978-1-62708-305-8
.... The polishing technique used should not introduce extraneous structures, such as disturbed metal, pitting, dragging out of inclusion, “comet tailing,” and staining. Polishing is usually conducted in several stages. Rough polishing is generally done with 6 or 3 μm diamond abrasive charged onto napless or low nap...
Abstract
This chapter describes the methods and equipment applicable to metallographic studies and discusses the preparation of specimens for examination by light optical microscopy. Five major operations for preparation of metallographic specimens are discussed: sectioning, mounting, grinding, polishing, and etching. The discussion covers their basic principles, advantages, types, and applications, as well as the equipment setup. The chapter includes tables that list etchants used for microscopic examination. It also provides information on microscopic examination, microphotography, and the effects of grain size on the structural properties of the material.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310193
EISBN: 978-1-62708-286-0
... to defect removal. Polishing for aesthetic purposes is generally done with abrasive coated belts and is done to both coils and sheets. There are no official roughness values for the various surface finishes. ASTM merely describes the finish by a grit with which it is typically made. Table 3 shows...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110153
EISBN: 978-1-62708-247-1
... in subsequent sections. Introduction A request is received as follows: How much will it cost to thin a BGA flat to 30 µm +/-5 µm with a mirror polish finish to < 5 nm RMS roughness? These types of requests lead to a great deal of miscommunication and grief for all involved due to the great volume...
Abstract
The need for precise targeted interactive surgery on boards or modules is the main driver of backside preparation technology. This article assists the analyst in making decisions on backside thinning and polishing requirements. Thinning of the substrates can be accomplished by flat lapping, laser assisted chemical etch, plasma reactive ion etch, and CNC based milling and polishing. The article discusses the general characteristics, key principles, advantages, and disadvantages of these processes. It also contains case studies that illustrate the application of these processes to ceramic cavity devices, injection molded parts, and ball grid arrays.
Image
Published: 01 November 2019
Figure 34 In line interferometer microscope view of top edge from Figure 33 showing a rough surface with flat tops from the polish.
More
Image
Published: 01 November 2019
Figure 33 Side camera 45° view of in process polishing. Locally edges are flat but rough, center is smooth and flat. Corners sit 60 µm lower than the center due to natural convex warpage of this particular BGA package.
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400087
EISBN: 978-1-62708-258-7
... the sample and then transferring the inked specimen onto paper. Sorby cut and polished his specimens to remove all “traces of roughness.” After polishing, he used extremely dilute nitric acid to etch his specimens. He actually followed the progress of etching in order not to overetch the specimen...
Abstract
This chapter discusses the important role of metallography and the metallographer in predicting and understanding the properties of metals and alloys. Examples are presented of a metallographer working as part of a team in a research laboratory of a large steel company and a metallographer working alone at a small iron foundry. The three basic areas in all metallography laboratories are discussed: the specimen preparation area, the polishing/etching area, and the observation/micrography area. Important safety issues in a metallographic laboratory are also considered.
1