Skip Nav Destination
Close Modal
Search Results for
ring rolling
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 296 Search Results for
ring rolling
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 February 2005
Image
Published: 01 February 2005
Fig. 12.12 Horizontal ring-rolling mill for producing rings with internal and external profiles. [ Beseler, 1969 ]
More
Image
Published: 01 February 2005
Fig. 12.13 Principle of semiautomatic ring-rolling machine for manufacturing of bearing races. [ Beseler, 1969 ]
More
Image
Published: 01 November 2013
Image
Published: 30 September 2023
Figure 8.31: Schematic illustration of the ring rolling process [ 2 ]. Reprinted by permission of Pearson Education, Inc.
More
Image
Published: 30 June 2023
Fig. 8.3 Hand forgings and sections of ring-rolled forgings at the Weber Metals plant in Torrance, California. Source: Ref 8.4
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480225
EISBN: 978-1-62708-318-8
... Abstract This chapter discusses the equipment and processes used to convert titanium billet and bar into useful shapes or more refined product forms. These secondary working operations include open-die, closed-die, hot-die and isothermal forging as well as ring rolling and extruding...
Abstract
This chapter discusses the equipment and processes used to convert titanium billet and bar into useful shapes or more refined product forms. These secondary working operations include open-die, closed-die, hot-die and isothermal forging as well as ring rolling and extruding. The chapter describes each method in detail and how it affects the microstructure and mechanical properties of various titanium alloys. It also discusses the propensity of titanium to react with oxygen and hydrogen when heated and explains how to mitigate the effects.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040141
EISBN: 978-1-62708-300-3
... Abstract Prior to forging, it is often necessary to preform billet stock to achieve adequate material distribution. This chapter discusses the equipment used for such operations, including transverse rolling machines, electric upsetters, ring-rolling mills, horizontal presses, and rotary...
Abstract
Prior to forging, it is often necessary to preform billet stock to achieve adequate material distribution. This chapter discusses the equipment used for such operations, including transverse rolling machines, electric upsetters, ring-rolling mills, horizontal presses, and rotary (orbital) and radial forging machines. It describes their basic operating principles as well as advantages and disadvantages.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740103
EISBN: 978-1-62708-308-9
..., including open-die and closed-die forging, hot upset and roll forging, high-energy-rate forging, ring rolling, rotary swaging, radial and orbital forging, isothermal and hot-die forging, precision forging, and cold forging. The chapter also includes information on cold and hot extrusion and drawing...
Abstract
This chapter discusses bulk deformation processes and how they are used to reshape metals and refine solidification structures. It begins by describing the differences between hot and cold working along with their respective advantages. It then discusses various forging methods, including open-die and closed-die forging, hot upset and roll forging, high-energy-rate forging, ring rolling, rotary swaging, radial and orbital forging, isothermal and hot-die forging, precision forging, and cold forging. The chapter also includes information on cold and hot extrusion and drawing operations.
Image
Published: 01 August 2018
Fig. 11.39 Longitudinal cross section of a rolled ring of AISI 8630 Mod steel produced by hot forging. (forging reduction 2:1), followed by ring rolling (total approximate deformation during hot working 4:1). Dendritic structure. The regions close to the cylindrical surfaces (left and right
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340165
EISBN: 978-1-62708-427-7
... by the size of the press or mill. Hand forgings and rings can produce a range of final sizes and geometries. The flexibility for forging to orient the workpiece for grain orientation is not possible for two-dimensional (2D) rolling or extrusion: Final machining cuts across the directional grain patterns...
Abstract
Forged aluminum products vary widely in their production methods and applications. The forging process allows for control of microstructure and directional properties, and their fatigue and fracture resistance are superior to shape castings. This chapter presents the types, equipment, process steps, alloys, and products of aluminum forging.
Image
in Secondary Working of Bar and Billet[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Fig. 10.13 Macrostructure of rolled Ti-6Al-4V ring illustrating the predominantly tangential grain flow
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720365
EISBN: 978-1-62708-305-8
... and polishing this surface and swabbing with cold ammonium persulfate, thus revealing the decarburization at both sides of the lap (if present). The condition can be eliminated with corrections in blocker die design. Ring-Rolled Forgings Discontinuities in forgings produced by ring-rolling can either...
Abstract
In forgings of both ferrous and nonferrous metals, the flaws that most often occur are caused by conditions that exist in the ingot, by subsequent hot working of the ingot or the billet, and by hot or cold working during forging. The inspection methods most commonly used to detect these flaws include visual, magnetic particle, liquid penetrant, ultrasonic, eddy current, and radiographic inspection. This chapter provides a detailed discussion on the characteristics, process steps, applications, advantages, and limitations of these methods. It also describes the flaws caused by the forging operation and the principal factors that influence the selection of a nondestructive inspection method for forgings.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230295
EISBN: 978-1-62708-298-3
... Abstract The vast majority of beryllium products are manufactured from blocks, forms, or billets of compacted powder that are machined or worked into shape. This chapter describes the metalworking processes used, including rolling, forming, forging, extrusion, drawing, and spinning. It covers...
Abstract
The vast majority of beryllium products are manufactured from blocks, forms, or billets of compacted powder that are machined or worked into shape. This chapter describes the metalworking processes used, including rolling, forming, forging, extrusion, drawing, and spinning. It covers the qualitative and quantitative aspects of each process and provides examples showing how they are implemented and the results that can be achieved. The chapter also discusses the issue of beryllium’s low formability and describes some of the advancements that have been made in near-net shape processing.
Image
in Secondary Working of Bar and Billet[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Fig. 10.12 Ring roller setup to produce symmetrical cylindrical or conical shapes. A preformed heavy-walled ring is heated for conventional forging and deformed between a driver and idler roll.
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280091
EISBN: 978-1-62708-267-9
... components are produced by: Die forging Upsetting Extrusion forging Roll forging Swaging (or versions using proprietary rotary forging machines) Ring rolling Two or more of these methods used in sequence The die forging categories can be subdivided into: Open-die forgings...
Abstract
This chapter discusses the similarities and differences of forging and forming processes used in the production of wrought superalloy parts. Although forming is rarely concerned with microstructure, forging processes are often designed with microstructure in mind. Besides shaping, the objectives of forging may include grain refinement, control of second-phase morphology, controlled grain flow, and the achievement of specific microstructures and properties. The chapter explains how these objectives can be met by managing work energy via temperature and deformation control. It also discusses the forgeability of alloys, addresses problems and practical issues, and describes the forging of gas turbine disks. On the topic of forming, the chapter discusses the processes involved, the role of alloying elements, and the effect of alloy condition on formability. It addresses practical concerns such as forming speed, rolling direction, rerolling, and heat treating precipitation-hardened alloys. It presents several application examples involving carbide-hardened cobalt-base and other superalloys, and it concludes with a discussion on superplasticity and its adaptation to commercial forging and forming operations.
Image
in Stress-Corrosion Cracking of Nickel-Base Alloys[1]
> Stress-Corrosion Cracking: Materials Performance and Evaluation
Published: 01 January 2017
Fig. 5.35 Effect of test environment and charging current density on the failure time of stressed C-ring specimens of alloy 625 (59% cold rolled + 500 °C, or 930 °F, for 50 h) and Hastelloy G (59% cold rolled+ 260 °C, or 500 °F, for 250 h). Room temperature; 100% yield stress. Source: Ref
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200158
EISBN: 978-1-62708-354-6
... Rolling mill edger frame. Assembly of cast components joined by electroslag welding. Total weight over 200 tons Cost Reduction The assembly of several large castings into a speed ring for a hydraulic turbine is shown in Figure 11-8 . Such assemblies often measure 30 feet (9 m) in diameter...
Image
in Secondary Working of Bar and Billet[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Fig. 10.14 The grain flow shown in this macrostructure of a closed-die radial section of a compressor wheel forging differs from that of the rolled ring in Fig. 10.13 .
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040319
EISBN: 978-1-62708-300-3
... ]. The part, located in a die, is rotated and pushed vertically upward while the inclined punch rotates. Thus, the machine is similar to a ring rolling mill that has a lower die cavity that is hydraulically pushed upward ( Fig. 23.23 ). Fig. 23.22 Fundamental principle of axial closed-die rolling...
Abstract
This chapter defines near-net shape forging as the process of forging parts close to their final dimensions such that little machining or only grinding is required as a final step. It then describes the causes of dimensional variations in forging, including die deflection, press deflection, and process inconsistencies, and discusses related innovations.
1