Skip Nav Destination
Close Modal
Search Results for
rheological behavior
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 31 Search Results for
rheological behavior
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290085
EISBN: 978-1-62708-319-5
... density, elastic modulus, rheological behavior, particle size, formulation control, feedstock mixing, and feedstock properties. The chapter also provides information on the processes involved in feedstock preparation and testing. elastic modulus feedstock density feedstock mixing mixture...
Abstract
This chapter is a detailed account of various attributes related to mixing and testing of powder-binder feedstocks. Mixing parameters and their effects on feedstock properties is discussed. The attributes reviewed include mixture homogeneity, wetting, powder-binder ratio, feedstock density, elastic modulus, rheological behavior, particle size, formulation control, feedstock mixing, and feedstock properties. The chapter also provides information on the processes involved in feedstock preparation and testing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780105
EISBN: 978-1-62708-281-5
... can be used to determine quickly and easily the fundamental rheological behavior of the solution, including the Newtonian, dilatant, pseudoplastic, or Bingham response, as shown in Fig. 2 ( Ref 5 ). However, offsetting this advantage is the insensitivity of solution techniques to subtle changes...
Abstract
This article addresses some established protocols in characterizing thermoplastics, whether they are homogeneous resins, alloyed or blended compositions, or highly modified thermoplastic composites. It begins with a description of various approaches used for the determination of molecular weight (MW) by viscosity measurements. This is followed by a discussion of the use of cone and plate and parallel plate geometries in determining the viscoelastic properties of a polymer melt. Details on some of the chromatographic techniques that allow determination of MW and MW distribution of polymers are then provided. The article concludes with information on three distinctive, but complementary operations of thermoanalytical techniques, namely differential scanning calorimetry, thermogravimetric analysis, and thermomechanical testing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060111
EISBN: 978-1-62708-343-0
...-of-phase, PC + PP, compressive creep out-of-phase. (e) In-phase, CP + PP, slow-fast strain cycle. (f) Out-of-phase, PC + PP, fast-slow strain cycle. Source: Ref 6.26 Fig. 6.39 Comparison of isothermal 1150 °C (2100 °F) and bithermal 1150 ⇔ 205 °C (2100 ⇔ 400 °F) fatigue behavior of the tantalum...
Abstract
This chapter explains why it is sometimes necessary to separate inelastic from elastic strains and how to do it using one of two methods. It first discusses the direct calculation of strain-range components from experimental data associated with large strains. It then explains how the method can be extended to the treatment of very low inelastic strains by adjusting tensile and compressive hold periods and continuous cycling frequencies. The chapter then begins the presentation of the second approach, called the total strain-range method, so named because it combines elastic and inelastic strain into a total strain range. The discussion covers important features, procedures, and correlations as well as the use of models and the steps involved in predicting thermomechanical fatigue (TMF) life. It also includes information on isothermal fatigue, bithermal creep-fatigue testing, and the predictability of the method for TMF cycling.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780089
EISBN: 978-1-62708-281-5
... as solid samples. The measurement can be made isothermally in a dynamic temperature scan and generally at different frequency and strain levels. Rheology is the study of the flow behavior of a material and is generally applied to liquids or semiliquids. A typical rheological curve is shown in Fig. 22...
Abstract
This article focuses on characterization techniques used for analyzing the physical behavior and chemical composition of thermoset resins, namely chromatography and infrared spectroscopy. The main purpose is to give sufficient detail to permit the reader understand a particular test technique and its value to the thermoset resin field. Epoxy resins are emphasized in the examples because they dominate the airframe and aerospace industries. The article also provides information on two categories of characterization of the processing behavior of thermoset. The first studies the thermal properties of reactive thermoset systems, while the second utilizes these thermal characteristics as the basis for monitoring and control during processing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040083
EISBN: 978-1-62708-300-3
... by minimizing a least-square functional consisting of experimental data and FEM simulated data. The FEM is used to analyze the behavior of the material during the test, whereas the optimization technique allows for automatic adjustment of parameters until the calculated response matches the measured one within...
Abstract
This chapter discusses the role of inverse analysis in providing input data for finite element simulations of metal forming processes. It describes the basic procedures for determining flow stress and friction by inverse analysis and for comparing experimental measurements with corresponding computed data. It also includes an example in which flow stress and friction were measured in compressed aluminum rings and the results used to verify the accuracy of predicted values.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290251
EISBN: 978-1-62708-319-5
..., and actuators. 11.2.3 Surface Hard Materials Surface carburization for hardening is widely practiced in steels. For other materials, the opportunity for exceptional wear behavior relies on selective chemical treatments or coatings. A powder-binder slurry is one means to dip and coat a component...
Abstract
This chapter is intended to identify materials, processes, and designs that will lead to great advances in powder-binder forming technologies. It discusses some of the structures obtained through these advances in powder-binder technologies such as binder jetting and extrusion-based additive manufacturing, including bound-metal deposition and fused-filament fabrication: oxidation-resistant high-temperature alloys, anisotropic structures, submicrometer-scale structures, surface hard materials, and artist metallic clays. Some of the advances discussed include the developments in process involving plastics, emulsions, ceramics, and porous structures and foams. Improvements in the design processes have led to the development of functional structures, controlled porosity, and bioinspired structures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780115
EISBN: 978-1-62708-281-5
... analysis, thermomechanical analysis, and rheological analysis. The basic thermal properties covered include thermal conductivity, temperature resistance, thermal expansion, specific heat, and the determination of glass-transition temperatures. The article further describes various factors influencing...
Abstract
This article covers the thermal analysis and thermal properties of engineering plastics with respect to chemical composition, chain configuration, and/or conformation of the base polymers. The thermal analysis techniques covered are differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and rheological analysis. The basic thermal properties covered include thermal conductivity, temperature resistance, thermal expansion, specific heat, and the determination of glass-transition temperatures. The article further describes various factors influencing the determination of service temperature of a material. Representative examples of different types of engineering thermoplastics are discussed in terms of structure and thermal properties. The article also discusses the thermal and related properties of thermoset resin systems.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870325
EISBN: 978-1-62708-344-7
... carbide. Source: Ref 12.14 Fig. 12.49 Reversed bending cyclic crack initiation behavior for (a) HS-110 and (b) HS-130 hot-pressed silicon nitride at 30 Hz for various temperatures. Source: Ref 12. 16 Fig. 12.50 Method of universal slopes prediction of fatigue for a hypothetical...
Abstract
This chapter discusses the effect of fatigue on polymers, ceramics, composites, and bone. It begins with a general comparison of polymers and metals, noting important differences in microstructure and cyclic loading response. It then presents the results of several studies that shed light on the fatigue behavior and crack growth mechanisms of common structural polymers and moves on from there to discuss the fatigue behavior of bone and how it compares to stable and cyclically softening metals. It also discusses the fatigue characteristics of engineered and composited ceramics and ceramic fiber-reinforced metal-matrix composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290201
EISBN: 978-1-62708-319-5
... in hydrogen, reaches comparable sintered density and strength. Typical heating rates are from 2 to 10 °C/min (3.6 to 18 °F/min). At 2 °C/min, almost all shrinkage occurs prior to reaching the peak temperature. Figure 10.1 illustrates this behavior. In Fig. 10.1 , densification occurs during heating...
Abstract
This chapter provides details on powder-binder processing for three materials, namely precipitation-hardened 17-4 PH stainless steel, cemented carbides, and alumina. The types of powders, binders, feedstock, shaping processes, debinding, sintering cycles, compositions, microstructure, distortion, postsintering treatments, and mechanical properties are presented for each. The shaping options include powder-binder approaches such as binder jetting, injection molding, extrusion, slip and slurry casting, centrifugal casting, tape casting, and additive manufacturing. Sintering options are outlined with respect to attaining high final properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780028
EISBN: 978-1-62708-281-5
... distinguishes them from Newtonian rheological behavior as is further explored in the section “ Thermal and Mechanical Properties ” in this article. This concept of M c can be related to mechanical properties intuitively. The degree of intermolecular attractive forces is limited by the chain length...
Abstract
This article describes in more detail the fundamental building-block level, atomic, then expands to a discussion of molecular considerations, intermolecular structures, and finally supermolecular issues. An explanation of important thermal, mechanical, and physical properties of engineering plastics and commodity plastics follows, and the final section briefly outlines the most common plastics manufacturing processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780051
EISBN: 978-1-62708-281-5
... structure allows one to understand and predict many of the properties of polymers. In turn, the thermal and rheological properties dictate the processing method. The act of processing will itself influence the properties of the plastic part. Shrinkage, warpage, density, strength, toughness, and many other...
Abstract
To ensure the proper application of plastics, one must keep in mind three factors that determine the appropriate end-use: material selection, processing, and design. This article begins by providing information on various factors pertinent to the anticipated use conditions of the article to be designed. This is followed by a discussion on several stages necessary to define the geometry of plastic parts. Details on the strength of and cost estimation for plastic parts are then provided. The article ends with a section providing information on the structure, properties, processing, and end-use applications of plastics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780267
EISBN: 978-1-62708-281-5
... systems such as elastomers and thermosets. These polymers show a range of wear behavior. For example, thermosets, which do not soften due to thermal energy, undergo chemical degradation at the interface. These degraded products detach themselves from the main body of the polymer and form transfer film...
Abstract
This article provides details on several of the classifications of polymer wear mechanisms, using wear data and micrographs from published works. The primary goals are to present the mechanisms of polymer wear and to quantify wear in terms of wear rate. The discussion begins by providing information on the processes involved in interfacial and cohesive wear. This is followed by sections describing the wear process and applications of elastomers, thermosets, glassy thermoplastics, and semicrystalline thermoplastics. The effects of environmental and lubricant on the wear failures of polymers are then discussed. The article further includes a case study describing the tribological performance of nylon. It ends by presenting some examples of wear failures of plastics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290169
EISBN: 978-1-62708-319-5
... with longer sintering times. Such behavior is treated by using sintering models, where the monitor, Y , such as shrinkage (or neck size ratio, surface area reduction, or densification), depends on hold time, t , and temperature, T , via the exponential relation: (Eq 8.1) Y 1 / N = C t...
Abstract
After shaping and first-stage binder removal, the component (with remaining backbone binder) is heated to the sintering temperature. Further heating induces densification, evident as dimensional shrinkage, pore rounding, and improved strength. This chapter begins with a discussion on the events that are contributing to sintering densification, followed by a discussion on the driving forces, such as surface energy, and high-temperature atomic motion as well as the factors affecting these processes. The process of microstructure evolution in sintering is then described, followed by a discussion on the tools used for measuring bulk properties to monitor sintering and density. The effects of key parameters, such as particle size, oxygen content, sintering atmosphere, and peak temperature, on the sintered properties are discussed. Further, the chapter covers sintering cycles and sintering practices adopted as well as provides information on dimensional control and related concerns of sintering. Cost issues associated with sintering are finally covered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290009
EISBN: 978-1-62708-319-5
... and the particle packing behavior. The former is measured by the cumulative particle size distribution. Specification of the median particle size (50% size) is based on the cumulative powder mass, arranged from the smallest to largest. This is termed D50. Two other sizes are commonly specified as well: D10 and D90...
Abstract
This chapter introduces the key powder fabrication attributes to assist in the identification of the right powders for an application. First, it describes the characteristics of engineering powders such as particle size distribution, powder shape and packing density, surface area, powder flow and rheology, and chemical analysis. The chapter then describes the general categories of powder fabrication methods, namely mechanical comminution, electrochemical precipitation, thermochemical reaction, and phase change and atomization. It provides information on the two largest contributors to powder price, namely raw material cost and conversion cost. The applicability of various processes to specific material systems is mentioned throughout this chapter.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060137
EISBN: 978-1-62708-355-3
... sensors D 4065 6721-1 Determining and reporting dynamic mechanical properties of plastics D 4092 6721 Dynamic mechanical measurements on plastics D 4440 6721-10 Rheological measurement of polymer melts using dynamic mechanical procedures D 5023 6721-3 Measuring the dynamic mechanical...
Abstract
The testing of plastics includes a wide variety of chemical, thermal, and mechanical tests. This chapter reviews the tensile testing of plastics, which has been standardized in ASTM D 638, "Standard Test Method for Tensile Properties of Plastics," and other comparable standards. It describes the fundamental factors that affect data from tensile tests, examines the stipulations in standardized tensile testing, and discusses the utilization of data from tensile tests.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780185
EISBN: 978-1-62708-281-5
... on plastics D 4440 6721–10 Rheological measurement of polymer melts using dynamic mechanical procedures D 5023 6721–3 Measuring the dynamic mechanical properties of plastics using three-point bending D 5026 6721–5 Measuring the dynamic mechanical properties of plastics in tension D 5045 572...
Abstract
This article briefly introduces some commonly used methods of mechanical testing of plastics for determining mechanical properties, also describing the test methods and providing comparative data for the mechanical property tests. In addition, creep testing and dynamic mechanical analyses of viscoelastic plastics are briefly described. The discussion covers the most commonly used tests for impact performance, various types of hardness test for plastics, the fatigue strength of viscoelastic materials, and the tension testing of elastomers and fibers.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060173
EISBN: 978-1-62708-343-0
... curves for coated single-crystal superalloy AM1 at 1100 °C (2010 °F) for V σ = 0 ( R σ = −1). Source: Ref 8.63 Fig. 8.10 Comparison of true fatigue behavior (shown by solid curves) as perceived by the authors in Ref 8.44 with ones (shown by dotted lines) calculated using averaged...
Abstract
This chapter provides a detailed review of creep-fatigue analysis techniques, including the 10% rule, strain-range partitioning, several variants of the frequency-modified life equation, damage assessment based on tensile hysteresis energy, the OCTF (oxidation, creep, and thermomechanical fatigue) damage model, and numerous methods that make use of creep-rupture, crack-growth, and void-growth data. It also discusses the use of continuum damage mechanics and includes examples demonstrating the accuracy of each method as well as the procedures involved.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550511
EISBN: 978-1-62708-307-2
.... This chapter describes the applications, properties, and behaviors of some of the more widely used structural ceramics, including alumina, aluminum titanate, silicon carbide, silicon nitride, zirconia, zirconia-toughened alumina (ZTA), magnesia-partially stabilized zirconia (Mg-PSZ), and yttria-tetragonal...
Abstract
Ceramics normally have high melting temperatures, excellent chemical stability and, due to the absence of conduction electrons, tend to be good electrical and thermal insulators. They are also inherently hard and brittle, and when loaded in tension, have almost no tolerance for flaws. This chapter describes the applications, properties, and behaviors of some of the more widely used structural ceramics, including alumina, aluminum titanate, silicon carbide, silicon nitride, zirconia, zirconia-toughened alumina (ZTA), magnesia-partially stabilized zirconia (Mg-PSZ), and yttria-tetragonal zirconia polycrystalline (Y-TZP). It also provides information on materials selection, design optimization, and joining methods, and covers every step of the ceramic production process.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290035
EISBN: 978-1-62708-319-5
... the filler phase is extracted. The filler occupies the gaps between the particles—the space that otherwise would be voids. It provides pressure transmission during forming. Fillers are selected to be easy to extract. Additives are selected to modify feedstock behavior. Usually, the concentration is low, just...
Abstract
Generally, binders consist of at least three ingredients: a backbone to provide strength (compounds such as polyethylene, polypropylene, ethylene vinyl acetate, and polystyrene); a filler, such as polyacetal and paraffin wax, to occupy space between particles; and additives, such as stearates, stearic acid, or magnesium stearate, as well as phosphates and sulfonates, to adjust viscosity, lubricate tooling, disperse particles, or induce binder wetting of the powder. In the case of binders deposited via ink jet printing, the binder contains solvents to lower the viscosity for easier jetting. The chapter provides a detailed description of these constituents. The requirements of a binder as well as the factors determining the physical and thermal properties of polymers are discussed. Then, two factors associated with solvation of polymers, namely solubility parameter and wetting, are covered. The chapter ends with information on the specification of polymers used in binders.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.9781627083447
EISBN: 978-1-62708-344-7