1-20 of 138 Search Results for

remelt hardening

Follow your search
Access your saved searches in your account

Would you like to receive an alert when new items match your search?
Close Modal
Sort by
Image
Published: 01 January 1998
Fig. 3-4 Macroetch quality of high-carbon sulfurized M2-type high-speed steel produced conventionally and by electroflux remelting. (a) From static cast 350 mm (14 in.) square ingot. Disks hardened and tempered. (b) and (c) From electroflux remelted 400 mm (16 in.) diam ingot. Polished More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740001
EISBN: 978-1-62708-308-9
... induction melting furnaces, and electroslag and vacuum arc remelting furnaces. It also covers casting, rolling, and annealing procedures and describes the basic steps in aluminum and titanium production. primary metal production rolling steel refining A GENERAL DIAGRAM for the production...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770099
EISBN: 978-1-62708-337-9
... Abstract This chapter is a study of the microstructure of case-hardened steels. It explains what can be learned by examining grain size, microcracking, nonmetallic inclusions, and the effects of microsegregation. It identifies information-rich features, describing their ideal characteristics...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900029
EISBN: 978-1-62708-358-4
... and by electroflux remelting. (a) From static cast 350 mm (14 in.) square ingot. Disks hardened and tempered. (b) and (c) From electroflux remelted 400 mm (16 in.) diam ingot. Polished and etched with nital. Source: Ref 3 Fig. 3-5 Eutectic cell size for 1360 kg (3000 Ib) M42 high-speed steel ingots...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240563
EISBN: 978-1-62708-251-8
... bottom to top, yielding high density and macrostructural homogeneity as well as producing an absence of segregation and shrinkage cavities. The precipitation-hardening nickel-base alloys are generally double vacuum induction melted and then vacuum arc or electroslag remelted. The structure...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280041
EISBN: 978-1-62708-267-9
... oxygen decarburization melting, vacuum induction melting, vacuum arc remelting, and electroslag remelting. It also addresses related issues such as consumable remelt quality, control anomalies, melt pool characteristics, and melt-related defects, and includes a section that discusses the processes...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170234
EISBN: 978-1-62708-297-6
... and Overview Maraging steels comprise a special class of high-strength steels that differ from conventional steels in that they are hardened by a metallurgical reaction that does not involve carbon. Instead, these steels are strengthened by the precipitation of intermetallic compounds at temperatures...
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340117
EISBN: 978-1-62708-427-7
... saw only the top to remove the sump region of the casting. The sawed ends are returned to the plant’s remelt department for remelting with other in-house scrap to create new rolling ingots. The end scrap is a part of the planned scrap generated during the rolling and finishing processes prior...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240411
EISBN: 978-1-62708-251-8
... Abstract There is a fairly wide variety of different tool steels for different applications. The American Iron and Steel Institute (AISI) classification of tool steels includes seven major categories: water-hardening tool steels, shock-resisting tool steels, cold work tool steels, hot work tool...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240371
EISBN: 978-1-62708-251-8
... because of the following limitations: They cannot be strengthened beyond approximately 690 MPa (100 ksi) without a significant loss in toughness and ductility. They are not hardenable to great depths, thus limiting the maximum cross section that can be through hardened. Severe quenches...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310123
EISBN: 978-1-62708-286-0
..., and niobium are also added at times for specific purposes explained in this chapter. Those martensitic stainless steels in which elements such as copper and titanium are added to produce additional hardening through precipitation are discussed in Chapter 4, “Corrosion Types.” The designers and engineers...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850001
EISBN: 978-1-62708-260-0
... pattern. In addition, the use of manufacturing techniques other than traditional ingot casting, such as continuous casting, centrifugal casting, electroslag remelting, or hot-isostatic pressing, produce noticeably different as-cast patterns. Also, there is a wide variety of metalworking processes that can...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280339
EISBN: 978-1-62708-267-9
... Metals Corp.) products. Carbide hardening was used to create the cobalt-base alloys, and, although the fundamentals of precipitation hardening were still being discovered, precipitation hardening nickel-base alloys were developed. At that time, the word “superalloys” had not yet been coined...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900001
EISBN: 978-1-62708-358-4
... overlaps the technology of carbon and low-alloy carbon steels, produced in large tonnages, which may be hardened by quench and tempering heat treatments. Although this association between tool steels and other hardenable steels is true, most texts on tool steels exclude treatment of the high-tonnage bar...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.9781627082679
EISBN: 978-1-62708-267-9
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170003
EISBN: 978-1-62708-297-6
... containing constituents that tend to be lost during remelt, corrections must be made by adding the pure metal or a hardener having a fairly high content of the alloy element. Mechanical Alloying Elements that are incompatible in many ways can be alloyed through mechanical means, as described...
Book Chapter

Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900291
EISBN: 978-1-62708-358-4
.... It provides information on hubbing and machined cavity grades of mold steels and describes the performance of the corrosion-resistant mold steels. The chapter discusses the processes involved in forging, annealing, stress relieving, carburizing, hardening, and tempering of mold steels. It presents...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130417
EISBN: 978-1-62708-284-6
... for induction heating and quenching, the use of magnetic flux concentrators to improve the efficiency of surface heating, and the quenching systems used for induction hardening. The discussion also provides information on time-temperature dependence in induction heating, workpiece distortion in induction...
Series: ASM Technical Books
Publisher: ASM International
Published: 30 June 2023
DOI: 10.31399/asm.tb.atia.t59340035
EISBN: 978-1-62708-427-7
... provides additional detail on the strengthening and softening mechanisms that allow aluminum alloys to attain a range of engineering properties. The strength of aluminum alloys can be controlled by three methods: solid-solution hardening by alloying, work hardening by plastic deformation, and precipitation...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260119
EISBN: 978-1-62708-336-2
... aluminum ingots, alloying elements and master alloys, and in-house process scraps. Virgin aluminum directly from the reduction cells or remelt ingots made from the virgin aluminum are sometimes used. The choice of using the high-purity aluminum ingot is a management decision to maintain high-purity billet...