Skip Nav Destination
Close Modal
Search Results for
reinforced
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 683 Search Results for
reinforced
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780276
EISBN: 978-1-62708-281-5
... Abstract This article briefly reviews abrasive and adhesive wear failure of reinforced polymers and polymer composites, namely particulate-filled polymers, short-fiber-reinforced polymers, polymers with continuous fibers, and mixed reinforcements and fabrics. It includes scanning electron...
Abstract
This article briefly reviews abrasive and adhesive wear failure of reinforced polymers and polymer composites, namely particulate-filled polymers, short-fiber-reinforced polymers, polymers with continuous fibers, and mixed reinforcements and fabrics. It includes scanning electron microscope micrographs of abraded surfaces of composites against 80-grade SiC paper and under 14 N load, and worn surfaces of abraded polyether-imide composites and polyamide 66 unidirectional composites and 66 hybrid composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540319
EISBN: 978-1-62708-309-6
... Abstract This chapter discusses the failure mechanisms associated with fiber-reinforced composites. It begins with a review of fiber-matrix systems and the stress-strain response of unidirectional lamina and both notched and unnotched composite laminate specimens. It then explains how cyclic...
Abstract
This chapter discusses the failure mechanisms associated with fiber-reinforced composites. It begins with a review of fiber-matrix systems and the stress-strain response of unidirectional lamina and both notched and unnotched composite laminate specimens. It then explains how cyclic loading can lead to delamination, the primary failure mode of most composites, and describes some of the methods that have been developed to improve delamination resistance, assess damage tolerance, determine residual strength, and predict failure modes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060183
EISBN: 978-1-62708-355-3
... Abstract This chapter presents the fundamentals of tensile testing of fiber-reinforced polymer composites. Basic tensile testing of polymer composites is divided into lamina and laminate testing. The chapter focuses on tensile testing of laminates. It discusses the most common tensile test...
Abstract
This chapter presents the fundamentals of tensile testing of fiber-reinforced polymer composites. Basic tensile testing of polymer composites is divided into lamina and laminate testing. The chapter focuses on tensile testing of laminates. It discusses the most common tensile test methods that have been standardized for fiber-reinforced composite materials. It also briefly reviews considerations in tensile testing of metal-matrix composites.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.9781627083492
EISBN: 978-1-62708-349-2
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870031
EISBN: 978-1-62708-314-0
... Abstract This chapter discusses the properties and processing characteristics of glass, aramid, carbon, and ultra-high molecular weight polyethylene fibers and related product forms, including woven fabrics, prepreg, and reinforced mats. It also includes a review of fiber terminology as well...
Abstract
This chapter discusses the properties and processing characteristics of glass, aramid, carbon, and ultra-high molecular weight polyethylene fibers and related product forms, including woven fabrics, prepreg, and reinforced mats. It also includes a review of fiber terminology as well as physical and mechanical property data for commercially important high-strength fibers.
Image
Published: 01 August 2013
Fig. 1.10 Specific strength of various lightweight materials. RP, reinforced polymer. Source: Ref 1.12
More
Image
in Physical, Chemical, and Thermal Analysis of Thermoplastic Resins[1]
> Characterization and Failure Analysis of Plastics
Published: 01 December 2003
Fig. 28 Thermogravimetric analysis (TGA) of reinforced nylon 6/6; 40 °C/min (70 °F/min) in air
More
Image
in Physical, Chemical, and Thermal Analysis of Thermoplastic Resins[1]
> Characterization and Failure Analysis of Plastics
Published: 01 December 2003
Fig. 29 Thermogravimetric analysis (TGA) of reinforced nylon; 80 °C/min (145 °F/min) in air
More
Image
Published: 01 December 2003
Fig. 10 The rate of fatigue crack propagation of injection-molded glass-reinforced polyvinyl chloride composites containing 10 and 30% glass as a function of the energy release rate, J I . Arrows indicate the critical energy release rate, J Ic , for each.
More
Image
Published: 01 December 2003
Fig. 18 Failure wear mechanisms in fiber-reinforced polymers sliding with fibers in different orientations. (a) Normal orientation; (b) parallel orientation; (c) antiparallel orientation. 1, wear failure of matrix by microplowing, microcracking, and microcutting; microplowing; 2, sliding
More
Image
Published: 01 December 2003
Fig. 22 Failure wear mechanisms of unidirectional fiber-reinforced polymer composites with different orientations of fibers with respect to sliding direction against a smooth metal surface. (a) Normal (N) aramid fibers (AF). (b) Parallel (P) carbon fibers (CF). (c) Wear reduction mechanism due
More
Image
Published: 01 December 2003
Fig. 6 Flexural creep compliance of parallel glass-fiber-reinforced aromatic-amine-cured epoxy resin (EPON Resin 826). t , time; a T , amount of curve shift
More
Image
Published: 01 November 2012
Fig. 9 Rising R -curve of a SiC whisker-reinforced alumina-ceramic-matrix composite, measured by the double-cantilever beam technique. Adapted from Ref 8
More
Image
in Fatigue and Fracture of Continuous-Fiber Polymer-Matrix Composites
> Fatigue and Fracture: Understanding the Basics
Published: 01 November 2012
Fig. 29 Relative compression strengths after impact of carbon-reinforced composite systems. PEEK, polyetheretherketone (thermoplastic). Source: Ref 7
More
Image
Published: 01 August 1999
Fig. 2 Cross section of a continuous-fiber reinforced boron/aluminum composite. Shown here are 142 μm diameter boron filaments coated with B 4 C in a 6061 aluminum alloy matrix
More
Image
Published: 01 October 2012
Fig. 8.36 Reaction injection molding, reinforced reaction injection molding, and structural reinforced injection molding processes. Source: Ref 8.1
More
Image
Published: 01 October 2012
Fig. 9.10 Elevated-temperature properties of SiC p discontinuously reinforced aluminum composites. Source: Ref 9.6
More
Image
Published: 01 October 2012
Fig. 9.17 SiC whisker-reinforced (20 vol% SiC) aluminum alloy sheet with the whiskers aligned in the direction of rolling. Source: Ref 9.8
More
Image
Published: 01 October 2012
Fig. 9.18 Yield strength comparison between whisker- and particulate-reinforced aluminum metal-matrix composite. Source: Ref 9.8
More
1