Skip Nav Destination
Close Modal
Search Results for
reinforce
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 687 Search Results for
reinforce
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 June 1983
Figure 12.11 Temperature dependence of thermal contraction for fabric- and mat-reinforced laminates. For fabric laminates, W =warp direction, N = normal direction. For mat laminates, E =edgewise direction. Wt.% = fiber weight fraction. Refs.: (1) Kasen, McDonald, et al. (1980) ; (2
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870031
EISBN: 978-1-62708-314-0
... Abstract This chapter discusses the properties and processing characteristics of glass, aramid, carbon, and ultra-high molecular weight polyethylene fibers and related product forms, including woven fabrics, prepreg, and reinforced mats. It also includes a review of fiber terminology as well...
Abstract
This chapter discusses the properties and processing characteristics of glass, aramid, carbon, and ultra-high molecular weight polyethylene fibers and related product forms, including woven fabrics, prepreg, and reinforced mats. It also includes a review of fiber terminology as well as physical and mechanical property data for commercially important high-strength fibers.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540319
EISBN: 978-1-62708-309-6
... Abstract This chapter discusses the failure mechanisms associated with fiber-reinforced composites. It begins with a review of fiber-matrix systems and the stress-strain response of unidirectional lamina and both notched and unnotched composite laminate specimens. It then explains how cyclic...
Abstract
This chapter discusses the failure mechanisms associated with fiber-reinforced composites. It begins with a review of fiber-matrix systems and the stress-strain response of unidirectional lamina and both notched and unnotched composite laminate specimens. It then explains how cyclic loading can lead to delamination, the primary failure mode of most composites, and describes some of the methods that have been developed to improve delamination resistance, assess damage tolerance, determine residual strength, and predict failure modes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780276
EISBN: 978-1-62708-281-5
... Abstract This article briefly reviews abrasive and adhesive wear failure of reinforced polymers and polymer composites, namely particulate-filled polymers, short-fiber-reinforced polymers, polymers with continuous fibers, and mixed reinforcements and fabrics. It includes scanning electron...
Abstract
This article briefly reviews abrasive and adhesive wear failure of reinforced polymers and polymer composites, namely particulate-filled polymers, short-fiber-reinforced polymers, polymers with continuous fibers, and mixed reinforcements and fabrics. It includes scanning electron microscope micrographs of abraded surfaces of composites against 80-grade SiC paper and under 14 N load, and worn surfaces of abraded polyether-imide composites and polyamide 66 unidirectional composites and 66 hybrid composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060183
EISBN: 978-1-62708-355-3
... Abstract This chapter presents the fundamentals of tensile testing of fiber-reinforced polymer composites. Basic tensile testing of polymer composites is divided into lamina and laminate testing. The chapter focuses on tensile testing of laminates. It discusses the most common tensile test...
Abstract
This chapter presents the fundamentals of tensile testing of fiber-reinforced polymer composites. Basic tensile testing of polymer composites is divided into lamina and laminate testing. The chapter focuses on tensile testing of laminates. It discusses the most common tensile test methods that have been standardized for fiber-reinforced composite materials. It also briefly reviews considerations in tensile testing of metal-matrix composites.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.omfrc.9781627083492
EISBN: 978-1-62708-349-2
Image
Published: 01 November 2010
Image
Published: 01 December 2006
Fig. 2.35 (a) Tipping wagon with welded tilting body in aluminum sheet reinforced with round spars of extruded aluminum sections. Source: Alusuisse. (b) Tilting body from (a) constructed from: 1 and 2, sheets of AlMg4.5Mn; 3, extruded aluminum curved section in AlMg4.5Mn; 4, round spar
More
Image
in Special Materials: Polymers, Bone, Ceramics, and Composites
> Fatigue and Durability of Structural Materials
Published: 01 March 2006
Fig. 12.51 Various forms of fiber-reinforced composites. (a) Continuous fiber. (b) Woven fiber. (c) Chopped fiber. (d) Hybrid. Source: Ref 12.18
More
Image
Published: 01 November 2010
Fig. 1.2 Influence of reinforcement type and quantity on composite performance
More
Image
in Mechanical Work of Steels—Cold Working
> Metallography of Steels: Interpretation of Structure and the Effects of Processing
Published: 01 August 2018
Fig. 12.35 Longitudinal cross section of a reinforcing bar (rebar) for concrete made to 600 MPa (87 ksi) minimum yield strength specification, with 6 mm (0.25 in.) diameter, lightly work hardened during wire drawing (reduction of 30%). Pearlite and ferrite. Along the longitudinal section
More
Image
Published: 01 November 2010
Fig. 10.17 Reaction injection molding (RIM) (no reinforcement)
More
Image
Published: 01 November 2010
Fig. 10.19 Structural reaction injection molding (SRIM) (long-fiber reinforcement)
More
Image
Published: 01 November 2010
Fig. 14.19 Relative CAI strengths of carbon-reinforced composite systems
More
Image
Published: 01 November 2010
Fig. 20.1 Metal matrix composite reinforcements. Source: Ref 1
More
Image
Published: 01 November 2010
Fig. 20.7 Properties of silicon carbide particulate (SiC p ) discontinuously reinforced aluminum composites. CTE, coefficient of thermal expansion; International Annealed Copper Standard (IACS). Source: Ref 2
More
Image
Published: 01 November 2010
Fig. 20.34 Rod-reinforced niobium carbide/niobium eutectic. Source: Ref 7
More
1