Skip Nav Destination
Close Modal
Search Results for
reduced-rake points
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 24
Search Results for reduced-rake points
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Machining and Chemical Shaping of Titanium
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480293
EISBN: 978-1-62708-318-8
... from the machined surface. Rake angles are not especially critical. Tool life progressively improves as the radial rake is reduced from +6 to 0° and down to –10°. Positive rake angles are generally used on high-speed steel cutters, but occasionally it is necessary to reduce the rake to zero...
Abstract
This chapter familiarizes readers with the machining characteristics of titanium and the implementation of machining and shaping processes. It explains why titanium alloys are more difficult to machine than other metals and how it impacts the equipment and procedures that can be used. It describes the basic machining requirements for titanium in terms of tool geometry and materials, machine setup rigidity, cutting speeds and feed rates, and surface conditions, and explains how the requirements are met in practice in milling, turning, drilling, surface grinding, and broaching operations. The chapter also covers chemical and electrochemical machining processes as well as flame cutting.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230339
EISBN: 978-1-62708-298-3
... or negative rake result in excessive edge cracking at the initiation or exit of a cut. Tools with larger clearance angles can improve metal removal but at a reduced tool life. Suggested tool geometries are given in Fig. 21.1 . Tools with multiple points, each with a modified geometry, have worked...
Abstract
Beryllium’s machining characteristics are similar to those of heat-treated cast aluminum and chilled cast iron. Like the other materials, it can be turned, milled, drilled, bored, sawed, cut, threaded, tapped, and trepanned with good results. This chapter explains how these machining operations are conducted and describes the effect of tooling materials, cutting speeds, metal-removal rates, and other variables. It also explains how to assess and remove surface damage caused by machining such as microcracks and twins.
Book Chapter
Metal Removal
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390456
EISBN: 978-1-62708-459-8
... the tribological point of view, the resultant P R can be regarded as the vector sum of the normal force P n acting perpendicular to the rake face and of the friction force F acting parallel to it. For a sharp tool with adequate clearance, friction on the clearance face can be neglected. Referring...
Abstract
In contrast to most plastic deformation processes, the shape of a machined component is not uniquely defined by the tooling. Instead, it is affected by complex interactions between tool geometry, material properties, and frictional stresses and is further complicated by tool wear. This chapter covers the mechanics and tribology of metal cutting processes. It discusses the factors that influence chip formation, including tool and process geometry, cutting forces and speeds, temperature, and stress distribution. It reviews the causes and effects of tool wear and explains how to predict and extend the life of cutting tools based on the material of construction, the use of cutting fluids, and the means of lubrication. It presents various methods for evaluating workpiece materials, chip formation, wear, and surface finish in cutting processes such as turning, milling, and drilling. It also discusses the mechanics and tribology of surface grinding and other forms of abrasive machining.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500001
EISBN: 978-1-62708-317-1
... in a greater shearing force. A higher rake reduces the required shearing force, allowing a smaller shearing machine to shear the material. However, a higher rake increases the distortion of material ( Ref 1.22 ). Thus, rake is a trade-off between shearing force, distortion, and other factors. Blade Clearance...
Abstract
This chapter provides an overview of the blanking process and the forces and stresses involved. It discusses the factors that affect part quality and tool life, including punch and die geometry, stagger, clearance, and wear as well as punch velocities, misalignment, and snap-thru forces. It also discusses ultra-high-speed blanking, fine blanking, and shearing, and the use finite-element simulations to predict part edge quality.
Book Chapter
Machining Data
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120313
EISBN: 978-1-62708-269-3
... for most titanium drilling operations over the conventional chisel edge. Equipment is available for grinding the spiral point on any two-fluted, high-speed steel drill up to 50.8 mm (2 in.) diameter. Companies employing spiral-point drills report these type drills reduce the large negative rake angle...
Abstract
This appendix provides an extensive amount of data corresponding to titanium machining processes, including sawing, turning, drilling, reaming, tapping, broaching, face milling, end milling, slotting, surface grinding, and thermal cutting.
Book Chapter
Machining
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740213
EISBN: 978-1-62708-308-9
... under the tool and adhering to the machined surface. Built-up edge formation can often be minimized or eliminated by reducing the depth of the cut, increasing the cutting speed, using positive rake tools, or applying a coolant. Fig. 9 Continuous chip with built-up edge. Source: Ref 6 Tool...
Abstract
This chapter covers the practical aspects of machining, particularly for turning, milling, drilling, and grinding operations. It begins with a discussion on machinability and its impact on quality and cost. It then describes the dimensional and surface finish tolerances that can be achieved through conventional machining methods, the mechanics of chip formation, the factors that affect tool wear, the selection and use of cutting fluids, and the determination of machining parameters based on force and power requirements. It also includes information on nontraditional machining processes such as electrical discharge, abrasive jet, and hydrodynamic machining, laser and electron beam machining, ultrasonic impact grinding, and electrical discharge wire cutting.
Book Chapter
Machining
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280189
EISBN: 978-1-62708-267-9
... 350 HB. Drills with standard chisel-edge points can be used for softer alloys. Drill wear and life can be controlled to some extent by modifying the drill point. Chipping of drill corners can be reduced by decreasing the point angle; however, severe wear at the point can be reduced by increasing...
Abstract
The qualities that make superalloys excellent engineering materials also make them difficult to machine. This chapter discusses the challenges involved in machining superalloys and the factors that determine machinability. It addresses material removal rates, cutting tool materials, tool life, and practical issues such as set up time, tool changes, and production scheduling. It describes several machining processes, including turning, boring, planing, trepanning, shaping, broaching, drilling, tapping, thread milling, and grinding. It also provides information on toolholders, fixturing, cutting and grinding fluids, and tooling modifications.
Book Chapter
Fundamentals of Metalworking
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390007
EISBN: 978-1-62708-459-8
... approximately it can be said that below one-third the melting point, the material strain hardens , that is, its strength increases as a result of deformation (also called cold working ). Above one-half the melting point ( hot working ), atomic mobility increases greatly, and strain hardening is much reduced...
Abstract
This chapter presents a qualitative and quantitative overview of the stresses, strains, forces, and energy associated with metalworking processes and the tribological behavior of metals. It covers key concepts necessary for understanding metalworking tribology, including plastic deformation, yield criteria, flow strength, and the application of flow rules. It explains how to calculate the work involved in deformation processes, how to assess the propensity for fracture, how to determine temperature rise and strain distribution in the workpiece, and how to classify metalworking processes based on related tribology.
Book Chapter
Wear Failures—Abrasive and Adhesive
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630169
EISBN: 978-1-62708-270-9
... Abstract This chapter is a detailed account of the general characteristics and effects of and the methods for preventing or reducing different categories of wear failures, namely abrasive (erosive, grinding, and gouging), adhesive, and fretting wear. abrasive wear adhesive wear fretting...
Abstract
This chapter is a detailed account of the general characteristics and effects of and the methods for preventing or reducing different categories of wear failures, namely abrasive (erosive, grinding, and gouging), adhesive, and fretting wear.
Book Chapter
Wear Failures
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610461
EISBN: 978-1-62708-303-4
... a large number of small cones with the points facing in the flow direction. Erosion-corrosion can be prevented, or reduced, through improved design, such as increasing the diameter and using streamlined bends in pipes, by altering the environment by deaeration or the addition of inhibitors...
Abstract
This chapter discusses the causes and effects of wear along with prevention methods. It covers abrasive, erosive, erosion-corrosion, grinding, gouging, adhesive, and fretting wear. It also discusses various forms of contact-stress fatigue, including subsurface-origin fatigue, surface-origin fatigue, subcase-origin fatigue (spalling fatigue), and cavitation fatigue.
Book Chapter
Titanium Alloys
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550223
EISBN: 978-1-62708-307-2
... have melting points higher than those of steels, but maximum useful temperatures for structural applications generally range from 425 to 595 °C (800 to 1100 °F). Titanium has the ability to passivate and thereby exhibit a high degree of immunity to attack by most mineral acids and chlorides. Titanium...
Abstract
Titanium is a lightweight metal used in a growing number of applications for its strength, toughness, stiffness, corrosion resistance, biocompatibility, and high-temperature operating characteristics. This chapter discusses the applications, metallurgy, properties, compositions, and grades of commercially pure titanium and alpha and near-alpha, alpha-beta, and beta titanium alloys. It describes primary and secondary fabrication processes, including melting, forging, forming, heat treating, casting, machining, and joining as well as powder metallurgy and direct metal deposition. It also compares and contrasts the properties of wrought, cast, and powder metal titanium products and discusses corrosion behaviors.
Book Chapter
Influential Microstructural Features
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770099
EISBN: 978-1-62708-337-9
... chapters, their significant influence on properties justifies their review. Grain Size For optimal properties, it is essential that the grain size of a carburized and hardened component is both uniform and fine. Generally, the starting point is a grain-refined steel having an ASTM grain size from...
Abstract
This chapter is a study of the microstructure of case-hardened steels. It explains what can be learned by examining grain size, microcracking, nonmetallic inclusions, and the effects of microsegregation. It identifies information-rich features, describing their ideal characteristics, the likely cause of variations observed, and their effect on mechanical properties and behaviors. The discussions throughout the chapter are aided by the use of images, diagrams, data plots, and tables.
Book Chapter
Melting and Conversion
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280041
EISBN: 978-1-62708-267-9
... continues until the entire charge is molten. At this point, the initial charge volume is reduced to that of the molten metal, and the furnace may be opened and the remaining portions of the charge added (the recharge). This additional charge is melted by the arcs until the entire bath is molten. Further...
Abstract
This chapter discusses the melting and conversion of superalloys and the solidification challenges they present. Superalloys have high solute content which can lead to untreatable defects if they solidify too slowly. These defects, called freckles, are highly detrimental to fatigue life. The chapter explains how and why freckles form as well as how they can be prevented. It describes the criteria for selecting the proper melting method for specific alloys based on melt segregation and chemistry requirements. It compares standard processes, including electric arc furnace/argon oxygen decarburization melting, vacuum induction melting, vacuum arc remelting, and electroslag remelting. It also addresses related issues such as consumable remelt quality, control anomalies, melt pool characteristics, and melt-related defects, and includes a section that discusses the processes involved in converting cast ingots into mill products.
Book Chapter
Drawing
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390241
EISBN: 978-1-62708-459-8
... of the workpiece must be reduced ( pointed ) for threading through the die. Pointing techniques are related to forging ( swaging or forge rolling ) or containerless extrusion ( push pointing ), and usually present no special tribological problems. Pointing, threading, and die changing account for most...
Abstract
Drawing is a bulk deformation process that involves significant surface generation and high pressures. This chapter provides an overview of the mechanics and tribology of wire, bar, tube, and shape drawing. It presents important equations for calculating stresses, forces, friction, heat, strain, and distortion for different tooling configurations and geometries. It explains how to select and apply lubricants based on drawing speed, die design, and other factors and how to maintain sufficient film thickness for hydrodynamic, mixed, and solid-film lubrication conditions. It also discusses the use of vibrating dies, the influence of surface finish and defects, and lubrication practices for specific materials.
Book Chapter
Low-Pressure Permanent and Semipermanent Mold Casting and Counter-Pressure Casting
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 November 2023
DOI: 10.31399/asm.tb.ceeg.t59370187
EISBN: 978-1-62708-447-5
... in the casting. While this is achieved in GPM by tilt pouring, the nonturbulent mold fill in LPPM and LPSPM is achieved by filling the mold from the bottom and controlling the fill pressure to avoid turbulence. The application of pressure during solidification achieves two objectives: Reduces the size...
Abstract
The low-pressure permanent molding (LPPM) and semipermanent molding (LPSPM) processes are versatile, and they meet the quality requirements of a variety of high-integrity, large-sized, and thin-walled aluminum castings for various industries. This chapter presents the major features, operation sequence, advantages, and applications of LPPM, LPSPM, and counter-pressure casting.
Book Chapter
Glossary
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400245
EISBN: 978-1-62708-258-7
... point object, as focused by a lens system. With monochromatic light, it consists of a central point of maximum intensity surrounded by alternate circles of light and darkness caused by the reinforcement and interference of diffracted rays. The light areas are called maxima and the dark areas minima...
Abstract
This chapter presents definitions of terms related to the metallurgy and metallographic study of irons and steels.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2023
DOI: 10.31399/asm.tb.ceeg.9781627084475
EISBN: 978-1-62708-447-5
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.9781627082679
EISBN: 978-1-62708-267-9
Book Chapter
Finishing and Coating
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740325
EISBN: 978-1-62708-308-9
... the ratios of the various ingredients, a wide range of melting points, operating temperature ranges, chemical reactivity, and other parameters can be obtained. As a whole, they offer combinations of reactivity, solvency, and speed unavailable in any other cleaning medium. The chemistry involved during...
Abstract
This chapter covers a wide range of finishing and coating operations, including cleaning, honing, polishing and buffing, and lapping. It discusses the use of rust-preventative compounds, conversion coatings, and plating metals as well as weld overlay, thermal spray, and ceramic coatings and various pack cementation and deposition processes. It also discusses the selection and use of industrial paints and paint application methods.
Book Chapter
Surfaces and Friction
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 September 2023
DOI: 10.31399/asm.tb.stmflw.t59390019
EISBN: 978-1-62708-459-8
...; the larger wavelength remnants represent the waviness. However, a clear set point differentiating roughness and waviness doesn’t exist and is application-specific. For example, the waviness of an optical lens would be considered roughness on an automotive part. Some important notes need to be made...
Abstract
This chapter examines the surface interactions that occur during metal forming operations at both the macroscopic and microscopic scale. It describes the measurement and characterization of surface profiles based on form error, waviness, and roughness. It explains how workpiece surfaces become rougher or smoother due to the effects of deformation, tooling interactions, and lubricant film thickness. It familiarizes readers with the concept of nominal contact, the role of asperities, and the effects of interface pressure, plasticity index, shear stress, and bulk strain rate. It also reviews the two basic friction rules applicable to metal forming and presents advanced friction models that account for the transition between Coulomb and Tresca behavior and the effects of lubrication.
1