Skip Nav Destination
Close Modal
By
Kenneth A. Walsh
Edited by
Edgar E. Vidal, Alfred Goldberg, Edward N.C. Dalder, David L. Olson, Brajendra Mishra
Search Results for
rao
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-3 of 3 Search Results for
rao
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.9781627083126
EISBN: 978-1-62708-312-6
Book
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.9781627082983
EISBN: 978-1-62708-298-3
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110244
EISBN: 978-1-62708-247-1
... Heinrich et al ., at both Stanford University and IBM was investigated by researchers at Intel (most notably, Bob Rao and Mario Paniccia) as a potential solution to this problem. Once they saw the potential on CMOS in their lab, they engaged with Schlumberger (around 1996) to build a system for them. Many...
Abstract
Laser Voltage Probing (LVP) is a key enabling technology that has matured into a well-established and essential analytical optical technique that is crucial for observing and evaluating internal circuit activity. This article begins by providing an overview on LVP history and LVP theory, providing information on electro-optical effects and free-carrier effects. It then focuses on commercially available continuous wave LVP systems. Alternative optoelectronic imaging and probing technologies for fault isolation, namely frequency mapping and laser voltage tracing, are also discussed. The subsequent section provides information on the use of Visible Laser Probing. The article closes with some common LVP observations/considerations and limitations and future work concerning LVP.