Skip Nav Destination
Close Modal
Search Results for
quench embrittlement
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 307 Search Results for
quench embrittlement
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410439
EISBN: 978-1-62708-265-5
... shortness associated with copper and overheating and burning as occur during forging. It addresses various types of embrittlement, including quench embrittlement, tempered-martensite embrittlement, liquid-metal-induced embrittlement, and hydrogen embrittlement, and concludes with a discussion on high...
Abstract
This chapter describes the causes of cracking, embrittlement, and low toughness in carbon and low-alloy steels and their differentiating fracture surface characteristics. It discusses the interrelated effects of composition, processing, and microstructure and contributing factors such as hot shortness associated with copper and overheating and burning as occur during forging. It addresses various types of embrittlement, including quench embrittlement, tempered-martensite embrittlement, liquid-metal-induced embrittlement, and hydrogen embrittlement, and concludes with a discussion on high-temperature hydrogen attack and its effect on strength and ductility.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900125
EISBN: 978-1-62708-358-4
... have high susceptibility to quench embrittlement ( Ref 3 ), a brittle, intergranular form of fracture where cracks follow paths along prior-austenite grain boundaries. When tool steels are intercritically austenitized between A cm and A 1 temperatures or subjected to compressive loading, as in many...
Abstract
The water-hardening steels are either essentially plain carbon steels or very low-alloy carbon steels. As a result, the water-hardening tool steels are the least expensive of tool steels and require strict control of processing and heat treatment to achieve good properties and performance. This chapter provides an overview of general processing and performance considerations of water-hardening tool steels. It describes the microstructural characteristics and hardenability of water-hardening tool steels. The chapter discusses the processes involved in the hardening and tempering of water-hardening tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410405
EISBN: 978-1-62708-265-5
... conditions and carbon contents noted by the box, and even in as-quenched conditions and regions that show tempered martensite embrittlement and temper embrittlement, fracture may be ductile, depending on carbon, alloy, and impurity element content. The effects of high tempering temperatures on the mechanical...
Abstract
Steels with martensitic and tempered martensitic microstructures, though sometimes perceived as brittle, exhibit plasticity and ductile fracture behavior under certain conditions. This chapter describes the alloying and tempering conditions that produce a ductile form of martensite in low-carbon steels. It also discusses the effect of tempering temperature on the mechanical behavior and deformation properties of medium-carbon steels.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130285
EISBN: 978-1-62708-284-6
... steel in those applications where it is necessary to use tempering temperatures that cause embrittlement of tempered martensite, which is soon defined. This reaction begins to occur at temperatures on the order of 100 °C. Cementite can also be observed during quenching when the M s temperature...
Abstract
This chapter reviews the causes and cases associated with the problems originated by tempering of steels. To provide background on this phenomenon, a brief description of the martensite reactions and the steel heat treatment of tempering is given to review the different stages of microstructural transformation. A section describing the types of embrittlement from tempering, along with mechanical tests for the determination of temper embrittlement (TE), is presented. Various factors involved in the interaction of the TE phenomenon with hydrogen embrittlement and liquid-metal embrittlement are also provided. The cases covered are grinding cracks on steel cam shaft and transgranular and intergranular crack path in commercial steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310163
EISBN: 978-1-62708-326-3
... in selection of tempering temperature. The chapter ends with a section discussing various effects, advantages, and disadvantages of precipitation hardening. austempering austenitizing martempering precipitation hardening quenching steel temper embrittlement tempering HARDENING OF STEEL...
Abstract
This chapter discusses the processes involved in the heat treatment of steel, namely austenitizing, hardening, quenching, and tempering. It begins with an overview of austenitizing of steels by induction heating, followed by a discussion on the processes involved in transformation of the soft austenite into martensite or lower bainite in the hardening operation. The chapter provides information on various quenching systems and a description of quenching techniques, namely austempering, martempering, and patenting. Difficulties associated with hardening of steel are discussed. Further, the chapter describes the equipment used for and principal variables of tempering. It discusses the causes for various forms of embrittlement due to tempering. Information on multiple tempering, protective-atmosphere tempering, and selective tempering are also provided, along with processes involved in selection of tempering temperature. The chapter ends with a section discussing various effects, advantages, and disadvantages of precipitation hardening.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240177
EISBN: 978-1-62708-251-8
.... The chapter concludes with a brief section on temper embrittlement. heat treatment ductility formability machinability annealing stress relieving normalizing spheroidizing austenitizing quenching tempering martempering austempering temper embrittlement steel ONE OF THE PRIMARY...
Abstract
One of the primary advantages of steels is their ability to attain high strengths through heat treatment while still retaining some degree of ductility. Heat treatments can be used to not only harden steels but also to provide other useful combinations of properties, such as ductility, formability, and machinability. This chapter discusses various heat treatment processes, namely annealing, stress relieving, normalizing, spheroidizing, and hardening by austenitizing, quenching and tempering. It also discusses two types of interrupted quenching processes: martempering and austempering. The chapter concludes with a brief section on temper embrittlement.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140099
EISBN: 978-1-62708-264-8
... the similarity of names, and avoid confusing the two types of embrittlement. (An older name for TE is temper brittleness.) Temper embrittlement occurs when tempering in the high-temperature range of approximately 600 °C (1100 °F). It is not a significant problem, because it can be avoided easily by quenching...
Abstract
Most quenched steels are tempered because the toughness of as-quenched steels is generally very poor. The tempering operation sacrifices strength for improvements in ductility and toughness. This chapter discusses the tempering process, the challenge of tempered martensite embrittlement, and the effect of wt% carbon on toughness. It also explains how alloying elements improve the hardenability and tempering response of plain carbon steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410487
EISBN: 978-1-62708-265-5
... quenching, surface tensile stresses may be high enough to cause quench cracking by intergranular fracture mechanisms, as described for quench embrittlement in Chapter 19, “Low Toughness and Embrittlement Phenomena in Steels , in this book. Stress-relief heat treatments and tempering lower surface residual...
Abstract
Temperature and deformation gradients developed in the course of manufacturing can have undesired effects on the microstructures along their path; the two most common being residual stress and distortion. This chapter discusses these manufacturing-related problems and how they can be minimized by heat treatments. It also provides information on residual stress evaluation and prediction techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410499
EISBN: 978-1-62708-265-5
... to produce sufficient high strength and hardness for demanding applications. Thus, steels with carbon concentrations of 0.40 to 0.50% are frequently selected for induction case hardening. Steels with this amount of carbon are sensitive to quench embrittlement, as discussed in Chapter 19, “Low Toughness...
Abstract
Mechanical components often require surface treatments to meet application demands. This chapter describes several surface hardening treatments for steel and their effect on microstructure, composition, and properties. It discusses flame hardening, induction heating, carburizing, nitriding, carbonitriding, and nitrocarburizing. The discussion on carburizing addresses several interrelated factors, including processing principles, alloying, surface oxidation, residual stresses, bending fatigue, contact fatigue, and fracture.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740271
EISBN: 978-1-62708-308-9
... various steels respond to heat treatments, such as annealing, normalizing, spheroidizing, tempering, and direct and interrupted quenching, and surface-hardening processes, such as flame and induction hardening, carburizing, nitriding, and carbonitriding. It also addresses the issue of temper embrittlement...
Abstract
This chapter discusses the processes used in manufacturing to thermally alter the properties of metals and alloys. It begins with a review of the iron-carbon system, the factors that affect hardenability, and the use of continuous cooling transformation diagrams. It then explains how various steels respond to heat treatments, such as annealing, normalizing, spheroidizing, tempering, and direct and interrupted quenching, and surface-hardening processes, such as flame and induction hardening, carburizing, nitriding, and carbonitriding. It also addresses the issue of temper embrittlement and discusses the effect of precipitation hardening on aluminum and other alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410373
EISBN: 978-1-62708-265-5
... as the supersaturation of as-quenched martensite is relieved and equilibrium mixtures of phases are approached with increased tempering intensity. Embrittlement phenomena that develop on tempering and additional characterization of quenched and tempered steel mechanical behavior are presented in later chapters...
Abstract
Most steels that are hardened are subjected to a subcritical heat treatment referred to as tempering. Tempering improves the toughness of as-quenched martensitic microstructures but lowers strength and hardness. This chapter describes the microstructural changes that occur during tempering and their effect on the mechanical properties of steel. It also discusses the effect of alloying elements and the formation of oxide colors.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130043
EISBN: 978-1-62708-284-6
... cracks were observed after inspection. This was originally attributed to quench cracking. On further examination, it was determined that a lap was present in the forging, indicated by the presence of high-temperature oxides in the crack along the crack faces. Fig. 1 A large roll was found to have...
Abstract
This chapter provides an overview of the possible mechanisms of failure for heat treated steel components and discusses the techniques for examining fractures, ductile and brittle failures, intergranular failure mechanisms, and fatigue. It begins with a description of the general sources of component failure. This is followed by a section on the stages of a failure analysis, which can proceed one after the other or occur at the same time. These stages of analysis are collection of background data, preliminary visual examination, nondestructive testing, selection and preservation of specimens, mechanical testing, macroexamination, microexamination, metallographic examination, determination of the fracture mechanism, chemical analysis, exemplar testing, and analysis and writing the report. The chapter ends with a discussion on various processes involved in the determination of the fracture mechanism.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900141
EISBN: 978-1-62708-358-4
... grain coarsening and associated phosphorus segregation and cementite formation at austenite grain boundaries. Such embrittled grain boundaries are then extremely sensitive to intergranular fracture during quenching or in service, as discussed in earlier chapters. Low-Alloy Chromium Tool Steels...
Abstract
The low-alloy special-purpose tool steels, designated as group L steels in the AISI classification system, are similar to the water-hardening tool steels but have somewhat greater alloy content. This chapter discusses the metallurgy and performance of low-alloy special-purpose tool steels, including those with high carbon content, those with medium carbon content, and those containing nickel.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090067
EISBN: 978-1-62708-266-2
... very low levels of carbon, manganese, sulfur, and phosphorus ( Ref 3.3 ). Quenched and tempered steels are prone to temper embrittlement because of the migration of tramp elements such as arsenic, antimony, and phosphorus to grain boundaries. Because SCC is normally intergranular, it follows...
Abstract
High-strength steels are susceptible to stress-corrosion cracking (SCC) even in moist air. This chapter identifies such steels and the applications where they are typically found. It provides information on crack growth kinetics and crack propagation models in which hydrogen embrittlement is the predominant mechanism. It explains how different application variables affect SCC, including loading mode, state of stress, type of steel, temperature, electrochemical potential, heat treatment, and deformation processes. It also compares SCC characteristics in different high-strength steels and discusses the influence of composition, steelmaking practice, and application environment.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560127
EISBN: 978-1-62708-353-9
... martensite embrittlement (abbreviated TME) is sometimes referred to as one step temper embrittlement (OSTE). The origin of this term is illustrated in Fig. 5-50 . To develop this type of embrittlement, the steel is quenched from the austenite region to form martensite, then it is tempered. In the range...
Abstract
This chapter first examines the tempering behavior of plain carbon steels and then that of alloy steels. Next, some correlations are examined which allow estimations of the tempered hardness from the chemical compositions, tempering temperature and tempering time. The chapter then describes the effect of tempering on the mechanical properties of plain carbon steels and the microstructure of plain carbon steels. It shows examples of the structure of plain carbon steels. Additionally, the chapter explains the stages and kinetics of tempering in alloy steels and plain carbon steels. It also describes some methods of estimating the hardness. Finally, the chapter discusses the important problem of temper embrittlement.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170123
EISBN: 978-1-62708-297-6
... on processing characteristics such as hardenability, formability, weldability, machinability, and temper embrittlement. In addition, the article provides an extensive amount of engineering data with relevance in materials selection. carbon steel corrosion resistance hardenability notch toughness...
Abstract
This article discusses the role of alloying in the production and use of carbon and low-alloy steels. It explains how steels are defined and selected based on alloy content and provides composition and property data for a wide range of designations and grades. It describes the effect of alloying on structure and composition and explains how alloy content can be controlled to optimize properties and behaviors such as ductility, strength, toughness, fatigue and fracture resistance, and resistance to corrosion, wear, and high-temperature creep. It also examines the effect of alloying on processing characteristics such as hardenability, formability, weldability, machinability, and temper embrittlement. In addition, the article provides an extensive amount of engineering data with relevance in materials selection.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130001
EISBN: 978-1-62708-284-6
..., and various types of heat treatments may be employed to meet design requirements for mechanical strength, corrosion, wear, and so on. Heat treatments include stress relieving, austenitizing, normalizing, annealing, quenching, and tempering (Ref 1) . Heat treating may also involve chemical or additional...
Abstract
A systematic procedure for minimizing risks involved in heat treated steel components requires a combination of metallurgical failure analysis and fitness for service with respect to safety and reliability based on risk analysis. This chapter begins with an overview of heat treat processing of steels. This is followed by sections on various aspects of heat treatment design and heat treating practices for minimizing distortion. Influence of design, steel grade, and condition is then illustrated in the examples of failures due to heat treatment. A procedure is analyzed to improve the performance of the design process of a component. A heat-transfer model, coupling with a phase transformation model, a thermomechanical model, and a thermochemical model, is also considered. The chapter further provides information on the failure aspects of and heat treatment procedures applied to welded components. It ends with a section on risk-based approach applicable to heat treated steel components.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900165
EISBN: 978-1-62708-358-4
... martensite embrittlement range. Fig. 9-10 Impact energy absorbed as a function of tempering temperature during unnotched Charpy and torsion impact testing of S1 steel specimens. Data from Bethlehem Steel Co. Curve Test Composition, % Quenching temperature Quenching medium C Si W Cr V...
Abstract
The shock-resisting tool steels, designated as group S steels in the AISI classification system, have been developed to produce good combinations of high hardness, high strength, and high toughness or impact fracture resistance. This chapter describes the alloying effects of silicon on the properties of shock-resisting tool steels. In addition, it discusses the compositions, characteristics, applications, advantages, and disadvantages of shock-resisting steels with and without tungsten.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090333
EISBN: 978-1-62708-266-2
... vulnerable to SCC due to hydrogen embrittlement. This chapter presents findings from several studies on this phenomenon, describing test conditions as well as cracking and fracture behaviors. It also discusses the effect of deformation on corrosion behavior, particularly for alloys without strongly...
Abstract
Amorphous alloys, because of their lack of crystallographic slip planes, are assumed to be insensitive to the selective corrosion attack that causes stress-corrosion cracking (SCC) in crystalline alloys. However, under certain conditions, melt-spun amorphous alloys have proven vulnerable to SCC due to hydrogen embrittlement. This chapter presents findings from several studies on this phenomenon, describing test conditions as well as cracking and fracture behaviors. It also discusses the effect of deformation on corrosion behavior, particularly for alloys without strongly passivating elements.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630081
EISBN: 978-1-62708-270-9
... Table 1 Summary of the types of embrittlement experienced by ferrous alloys Embrittlement type Susceptible steels Causes Result Strain-age embrittlement Low-carbon steel Precipitation after deformation processing Strength increases, ductility decreases Quench-age embrittlement Low...
Abstract
A brittle fracture occurs at stresses below the material's yield strength (i.e., in the elastic range of the stress-strain diagram). This chapter focuses on brittle fracture in metals and, more specifically, ferrous alloys. It lists the factors that must all be present simultaneously in order to cause brittle fracture in a normally ductile steel. The chapter then discusses the macroscale characteristics and microstructural aspects of brittle fracture. A summary of the types of embrittlement experienced by ferrous alloys is presented. The chapter concludes with a brief section providing information on mixed fracture morphology.