Skip Nav Destination
Close Modal
Search Results for
quantitative fractography
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 36 Search Results for
quantitative fractography
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270031
EISBN: 978-1-62708-301-0
.... The chapter also covers quantitative fractography, fracture surface topography analysis, and the use of oxide dating as well as fault tree and failure modes and effects analysis (FMEA) and computational techniques. fault tree analysis fracture surface topography analysis oxide dating quantitative...
Abstract
This chapter discusses some of the more advanced methods and procedures used in failure analysis, including in-service material sampling, in situ microstructure analysis, and a form of punch testing that can determine the fracture toughness of any material from a tiny specimen. The chapter also covers quantitative fractography, fracture surface topography analysis, and the use of oxide dating as well as fault tree and failure modes and effects analysis (FMEA) and computational techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270025
EISBN: 978-1-62708-301-0
... Abstract This chapter provides an overview of the tools and techniques used to examine failure specimens and the wealth of information that can be obtained from fracture surfaces, cracks, wear patterns, and other such features. It discusses the use of metallography, fractography, and optical...
Abstract
This chapter provides an overview of the tools and techniques used to examine failure specimens and the wealth of information that can be obtained from fracture surfaces, cracks, wear patterns, and other such features. It discusses the use of metallography, fractography, and optical and electron microscopy. It presents a number of images recorded using these methods and explains what they reveal about the mode of fracture and the state of the component prior to failure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850410
EISBN: 978-1-62708-260-0
... structure microstructural analysis quantitative fractography quantitative microscopy 6-1 Introduction Metallurgists have relied, in general, on qualitative descriptions of microstructures. Structural features are rated by comparison to charts describing many types of structural features. For some...
Abstract
This chapter covers the emerging practice of quantitative microscopy and its application in the study of the microstructure of metals. It describes the methods used to quantify structural gradients, volume fraction, grain size and distribution, and other features of interest. It provides examples showing how the various features appear, how they are measured, and how the resulting data are converted into usable form. The chapter also discusses the quantification of fracture morphology and its correlation with material properties and behaviors.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430107
EISBN: 978-1-62708-253-2
... precipitates, and the sigma phase; and the evaluation of the effect of the environment on the tube material, leading to issues such as scaling and corrosion. Some of the more frequently used techniques for characterization of boiler tubes are quantitative metallography (i.e., optical microscopy) using...
Abstract
This chapter describes some of the most effective tools for investigating boiler tube failures, including scanning electron microscopy, optical emission spectroscopy, atomic absorption spectroscopy, x-ray fluorescence spectroscopy, x-ray diffraction, and x-ray photoelectron spectroscopy. It explains how the tools work and what they reveal. It also covers the topic of image analysis and its application in the measurement of grain size, phase/volume fraction, delta ferrite and retained austenite, inclusion rating, depth of carburization/decarburization, scale thickness, pearlite banding, microhardness, and hardness profiles. The chapter concludes with a brief discussion on the effect of scaling and deposition and how to measure it.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910475
EISBN: 978-1-62708-250-1
... Type of information provided Advantages Limitations Metallography and fractography A.1 Macroexamination Examination of bulk failure or sample by eye or low-power optical device General incidence/extent of failure/damage. Juxtaposition of failure/damage. Orientation and direction...
Abstract
This chapter discusses the techniques applicable to the diagnosis of corrosion failures, including visual and microscopic examination of corroded surfaces and microstructure; chemical analysis of the metal, corrosion products, and bulk environment; nondestructive evaluation methods; corrosion testing techniques; and mechanical testing techniques. A guide to investigative techniques used in corrosion failure analysis is provided in a table, describing the advantages and limitations of each technique. The principal stages of the investigation and analysis of corrosion failures discussed in the chapter are: collection of background information and sampling; preliminary laboratory examination; detailed metallographic and fractographic examinations; chemical analysis of corrosion products and bulk materials; corrosion testing for quality control; mechanical testing for quality control; and analysis of results and report writing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.t51180151
EISBN: 978-1-62708-256-3
... in Fractography , Vol 12 (1987) of the ASM Handbook . 3. Nondestructive Inspection Although often used as quality-control tools, several nondestructive tests are useful in failure investigation and analysis: magnetic-particle inspection of ferrous metals, liquid-penetrant inspection, ultrasonic inspection...
Abstract
This appendix focuses on procedures, techniques, and precautions associated with the investigation and analysis of metallurgical failures that occur in service. It describes the steps of an orderly failure analysis from collecting and examining samples to performing mechanical and nondestructive tests, preparing and examining fractographs and micrographs, determining failure mode, writing the report, and developing follow-up recommendations. It also examines the fundamental mechanisms of failure, why they occur, and how to identify them by their characteristic features.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540297
EISBN: 978-1-62708-309-6
... System for Classification of Advanced Ceramics C 1322 Standard Practice for Fractography and Characterization of Fracture Origins in Advanced Ceramics C 1361 Standard Practice for Constant-Amplitude, Axial Tension-Tension Cyclic Fatigue of Advanced Ceramics at Ambient Temperature C 1368...
Abstract
Structural and fracture mechanics-based tools for metals are believed to be applicable to nonmetals, as long as they are homogeneous and isotropic. This chapter discusses the essential aspects of the fatigue and fracture behaviors of nonmetallic materials with an emphasis on how they compare with metals. It begins by describing the fracture characteristics of ceramics and glasses along with typical properties and subcritical crack growth mechanisms. It then discusses the properties of engineering plastics and the factors affecting crack formation and growth, fracture toughness, fatigue life, and stress rupture failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030148
EISBN: 978-1-62708-282-2
... is available in the article “ Modes of Fracture ” in Fractography , Volume 12 of ASM Handbook , formerly Metals Handbook , 9th ed. Classification of Hydrogen Processes The specific types of hydrogen damage have been categorized in order to enhance the understanding of the factors that affect...
Abstract
Hydrogen damage is a form of environmentally assisted failure that results most often from the combined action of hydrogen and residual or applied tensile stress. This chapter classifies the various forms of hydrogen damage, summarizes the various theories that seek to explain hydrogen damage, and reviews hydrogen degradation in specific ferrous and nonferrous alloys. The preeminent theories for hydrogen damage are based on pressure, surface adsorption, decohesion, enhanced plastic flow, hydrogen attack, and hydride formation. The specific alloys covered are iron-base, nickel, aluminum, copper, titanium, zirconium, vanadium, niobium, and tantalum alloys.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090419
EISBN: 978-1-62708-266-2
... microscopic examination nickel nickel alloys nondestructive evaluation stress-corrosion cracking titanium titanium alloys fractography STRESS-CORROSION CRACKING (SCC) is a term used to describe service failures that occur by a process of environmentally induced crack initiation and propagation...
Abstract
This chapter describes nondestructive evaluation (NDE) test methods and their relative effectiveness for diagnosing the cause of stress-corrosion cracking (SCC) service failures. It discusses procedures for analyzing various types of damage in carbon and low-alloy steels, high-strength low-alloy steels, hardenable stainless steels, austenitic stainless steels, copper-base alloys, titanium and titanium alloys, aluminum and aluminum alloys, and nickel and nickel alloys. It identifies material-environment combinations where SCC is known to occur, provides guidelines on how to characterize cracking and fracture damage, and explains what to look for during macroscopic and microscopic examinations as well as chemical and metallographic analyses. It also includes nearly a dozen case studies investigating SCC failures in various materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270005
EISBN: 978-1-62708-301-0
... is involved. For example, the following are some definitions noted in Ref 2: Defect: An imperfection (deviation from perfection) that can be shown to cause failure by a quantitative analysis and that would not have occurred in the absence of the imperfection Manufacturing defect (Legal...
Abstract
This chapter identifies the primary causes of service failures and discusses the types of defects from which they stem. It presents more than a dozen examples of failures attributed to such causes as design defects, material defects, and manufacturing or processing defects as well as assembly errors, abnormal operating conditions, and inadequate maintenance. It also describes the precise usage of terms such as defect, flaw, imperfection, and discontinuity.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.9781627082600
EISBN: 978-1-62708-260-0
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540047
EISBN: 978-1-62708-309-6
Abstract
This chapter examines the phenomena of deformation and fracture in metals, providing readers with an understanding of why it occurs and how it can be prevented. It begins with a detailed review of tension and compression stress-strain curves, explaining how they are produced and what they reveal about the load-carrying characteristics of engineering materials. It then discusses the use of failure criteria and the determination of yielding and fracture limits. It goes on to describe the mechanisms and appearances of brittle and ductile fractures and stress rupture, providing detailed images, diagrams, and explanations. It discusses the various factors that influence strength and ductility, including grain size, loading rate, and temperature. It also provides information on the origin of residual stresses, the concept of toughness, and the damage mechanisms associated with creep and stress rupture, stress corrosion, and hydrogen embrittlement.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130111
EISBN: 978-1-62708-284-6
... fractography can be performed. Before any cleaning procedures begin, the fracture surface should be surveyed with a low-power stereobinocular microscope, and the results should be documented with appropriate sketches or photographs. Low-power microscope viewing will also establish the severity of the cleaning...
Abstract
This chapter briefly outlines some of the basic aspects of failure analysis, describing some of the basic steps and major concerns in conducting a failure analysis. A brief review of failure types from fracture, distortion, wear-assisted failure, and environmentally assisted failure (corrosion) is also provided.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.horfi.9781627082563
EISBN: 978-1-62708-256-3
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2017
DOI: 10.31399/asm.tb.sccmpe2.t55090043
EISBN: 978-1-62708-266-2
Abstract
This chapter addresses the issue of stress-corrosion cracking (SCC) in carbon and low-alloy steels. It discusses crack initiation, propagation, and fracture in aqueous chloride, hydrogen sulfide, sulfuric acid, hydroxide, ammonia, nitrate, ethanol, methanol, and hydrogen gas environments. It explains how composition and microstructure influence SCC, as do mechanical properties such as strength and fracture toughness and processes such as welding and cold work. It also discusses the role of materials selection and best practices for welding.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.9781627082532
EISBN: 978-1-62708-253-2
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.9781627082587
EISBN: 978-1-62708-258-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400245
EISBN: 978-1-62708-258-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610147
EISBN: 978-1-62708-303-4
Abstract
This chapter discusses the factors that play a role in fatigue failures and how they affect the service life of metals and structures. It describes the stresses associated with high-cycle and low-cycle fatigue and how they differ from the loading profiles typically used to generate fatigue data. It compares the Gerber, Goodman, and Soderberg methods for predicting the effect of mean stress from bending data, describes the statistical nature of fatigue measurements, and explains how plastic strain causes cyclic hardening and softening. It discusses the work of Wohler, Basquin, and others and how it led to the development of a strain-based approach to fatigue and the use of fatigue strength and ductility coefficients. It reviews the three stages of fatigue, beginning with crack initiation followed by crack growth and final fracture. It explains how fracture mechanics can be applied to crack propagation and how stress concentrations affect fatigue life. It also discusses fatigue life improvement methods and design approaches.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490021
EISBN: 978-1-62708-340-9
... is relatively easy. The presence of large amounts of phosphorus, tin, manganese, and silicon in the steel is an indication that temper embrittlement may be involved. Fractography generally indicates an intergranular fracture with little evidence of ductile dimples on the fracture surface. The extent...
Abstract
The toughness of a material is its ability to absorb energy in the form of plastic deformation without fracturing. It is thus a measure of both strength and ductility. This chapter describes the fracture and toughness characteristics of metals and their effect on component lifetime and failure. It begins with a review of the ductile-to-brittle transition behavior of steel and the different ways to measure transition temperature. It then explains how to predict fracture loads using linear-elastic fracture mechanics and how toughness is affected by temperature and strain rate as well as grain size, inclusion content, and impurities. It also presents the theory and use of elastic-plastic fracture mechanics and discusses the causes, effects, and control of temper embrittlement in various types of steel.