Skip Nav Destination
Close Modal
Search Results for
prof
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 26
Search Results for prof
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Life-Assessment Techniques for Combustion Turbines
> Damage Mechanisms and Life Assessment of High-Temperature Components
Published: 01 December 1989
Fig. 9.49. Decrease in time to failure with creep voiding ( Ref 77 ; courtesy of Prof. Y. Lindblom, F.F.V. Maintenance, Linkoping, Sweden). Micrographs show master scale defining creep-void grades: grade a, <0.5; b, 0.5; c, 1.0; d, 1.5; e, 2.0; f, 3.0. Graph shows relationship between creep
More
Image
Published: 30 September 2023
Figure 3.2: (a) Illustration of error of form, waviness and roughness; (b) surface profile showing surface height variation relative to mean reference line. The top surface depicts a section of a surface profile; the bottom shows the roughness, after waviness and error of form have been removed...
More
Image
Published: 01 November 2019
Figure 3 Faster fault localization enables faster yield ramp and helps maximize profit while margins are at their highest
More
Image
in Failure Analysis and Reliability of Optoelectronic Devices[1]
> Microelectronics Failure Analysis: Desk Reference
Published: 01 November 2019
Fig 6 TEM of microloops from a gradually-degraded sample. Image courtesy of Prof. Pierre Petroff [8] .
More
Image
in Melting, Casting, and Powder Metallurgy[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Fig. 8.47 Comparison of ingot and powder metallurgy tensile properties. Courtesy of Prof. Igor Polkin, VILS, Russia
More
Image
in Crystal Structure Defects and Imperfections
> Crystalline Imperfections: Key Topics in Materials Science and Engineering
Published: 01 October 2021
Fig. 5 Atomic arrangement in a screw dislocation. Excerpted from an animation video produced by Branicio Research Lab; reprinted with permission from Prof. Paulo Branicio.
More
Image
in Failure Analysis and Reliability of Optoelectronic Devices[1]
> Microelectronics Failure Analysis: Desk Reference
Published: 01 November 2019
Fig 10 Plan-view (i.e., top-view) TEM of a ❬100❭ DLD growing out of a threading dislocation. Threading dislocation is highlighted with the letter “D”. Photo courtesy of Prof. Pierre Petroff of UCSB, after [17] .
More
Image
in Crystal Structure Defects and Imperfections
> Crystalline Imperfections: Key Topics in Materials Science and Engineering
Published: 01 October 2021
Fig. 9 (a) Schematic diagram showing atomic displacements during twinning. (b) Twins appearing as fine lines on the surface of tin after bending deformation. Courtesy of Prof. K. Stair. (c) Annealing twins in Inconel 718 after annealing at 1100 °C for 2 minutes. Source: Ref 3
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.t56020001
EISBN: 978-1-62708-389-8
... a multistoried parking garage. Fig. 5 Atomic arrangement in a screw dislocation. Excerpted from an animation video produced by Branicio Research Lab; reprinted with permission from Prof. Paulo Branicio. The interaction between the strain field of a screw dislocation and that of substitutional...
Abstract
Alloying, heat treating, and work hardening are widely used to control material properties, and though they take different approaches, they all focus on imperfections of one type or other. This chapter provides readers with essential background on these material imperfections and their relevance in design and manufacturing. It begins with a review of compositional impurities, the physical arrangement of atoms in solid solution, and the factors that determine maximum solubility. It then describes different types of structural imperfections, including point, line, and planar defects, and how they respond to applied stresses and strains. The chapter makes extensive use of graphics to illustrate crystal lattice structures and related concepts such as vacancies and interstitial sites, ion migration, volume expansion, antisite defects, edge and screw dislocations, slip planes, twinning planes, and dislocation passage through precipitates. It also points out important structure-property correlations.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.9781627083898
EISBN: 978-1-62708-389-8
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270053
EISBN: 978-1-62708-301-0
.... , “ Report of the Court of Inquiry Investigating Accident to Air India Boeing 747 Aircraft VT-EFO, Kanishka on June 23, 1985 ,” New Delhi , 1986 4. Rhines Prof. F.N. , University of Florida , Gainesville , private communication. ...
Abstract
This chapter discusses the role of failure analysis in cases involving product liability, property damage, and personal injury litigation. It also explains how material science and technology shed light on criminal activities such as smuggling, counterfeiting, theft, and the willful destruction of property.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870009
EISBN: 978-1-62708-344-7
Abstract
This chapter provides a detailed analysis of the cyclic stress-strain behavior of materials under uniaxial stress and strain cycling. It first considers the case of a stable material under constant-amplitude strain cycling then broadens the discussion to materials that harden or soften with continued strain reversals. It compares and contrasts the response patterns of such materials, explaining how the movement of dispersed particles and dislocations influences their behavior. It then examines the behavior of materials under uniaxial strain reversals of varying amplitude and explains how to construct double-amplitude stress-strain curves that account for complex straining histories. For special cases, those involving complex materials such as gray cast iron or highly complex straining patterns, the chapter presents other methods of analysis, including the rainflow cycle counting method, mechanical modeling based on displacement-limited elements, Wetzel’s method, and deformation modeling. It also explains the difference between force cycling and stress cycling and presents alternate techniques for predicting whether a material will become harder or softer in response to strain cycling.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230019
EISBN: 978-1-62708-298-3
... ,” Prof. Paper 318, U.S. Geological Survey 10.3133/pp318 Selected References Selected References • Lindsey D.A. , Ganow H. , and Mountsoy W. , 1973 . “ Hydrothermal Alteration Associated with Beryllium Deposits at Spor Mountain, Utah ,” U.S. Geological Survey 10.3133...
Abstract
Beryllium is the 44th most abundant element on Earth, with an estimated concentration of six parts per million in the Earth’s crust. It is found in various forms in more than 100 minerals, two of which, beryl and bertrandite, account for most of the beryllium produced throughout the world. This chapter describes where and how beryllium is obtained and provides facts, figures, and insights on global supply and demand.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110524
EISBN: 978-1-62708-247-1
... if they don’t combine into larger, observable structures [5 , 7] . Fig 6 TEM of microloops from a gradually-degraded sample. Image courtesy of Prof. Pierre Petroff [8] . Common Failure Mechanisms The Difference Between Maverick and Wearout Failure Mechanisms When a failure occurs, one...
Abstract
Optoelectronic components can be readily classified as active light-emitting components (such as semiconductor lasers and light emitting diodes), electrically active but non-emitting components, and inactive components. This chapter focuses on the first category, and particularly on semiconductor lasers. The discussion begins with the basics of semiconductor lasers and the material science behind some causes of device failure. It then covers some of the common failure mechanisms, highlighting the need to identify failures as wearout or maverick failures. The chapter also covers the capabilities of many key optoelectronic failure analysis tools. The final section describes the common steps that should be followed so as to assure product reliability of optoelectronic components.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2010
DOI: 10.31399/asm.tb.hss.t52790033
EISBN: 978-1-62708-356-0
..., 1920, a patent attorney by the name of Christy filed the suit “The American Stainless Steel Company vs. Ludlum Steel Company.” The American Stainless Steel Company retained the services of Prof. William Campbell of Columbia College to make some experiments. Harry Brearley also was asked to come to New...
Abstract
This chapter provides insights into the work of a stainless steel pioneer, Harry Brearley. It explains how Brearley's early life and experience led him to become a self-trained chemist and metallurgist.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060021
EISBN: 978-1-62708-343-0
...-0.25V steel Fig. 2.3 Fracture mechanism map for Inconel X-750. Source: Ref 2.1 The creep-rupture data available in the late 1940s and early 1950s were carefully generated in selected laboratories, such as those of Profs. James Freeman at the University of Michigan or Nicholas Grant...
Abstract
This chapter focuses on creep-rupture failure, or more precisely, the time required for such a failure to occur at a given stress and temperature. It begins with a review of creep-rupture phenomena and the various ways creep-rupture data are presented and analyzed. It then examines a large collection of creep-rupture data corresponding to different alloy designations and heat treatments, identifying key relationships, similarities, and differences. It also presents a test method developed by the authors in which twelve materials are tested over a range of temperature, stress, and time in order to determine multiheat constants that are then used to fit multiheat data from other materials and thus estimate rupture times.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560263
EISBN: 978-1-62708-353-9
Abstract
Structural steels are used for components such as I-beams and automobile frames. This chapter focuses on processing these steels to attain a fine primary ferrite grain size to develop high strength. It first reviews the concepts and principles of recrystallization in plastically deformed metals. The chapter reviews the concepts of annealing of cold worked metals. It then looks at hot working and the grain size associated with it. Additionally, the chapter reviews the methods of strengthening in the steels that rely mainly on reduction in the primary ferrite grain size. It discusses basic methods used to develop a small austenite grain size, and hence a small primary ferrite grain size. Then, the chapter covers the processes involved in the precipitation hardening of the ferrite. Finally, it examines some commercial thermomechanical processes used on structural steels, namely hot deformation and controlled cooling.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480161
EISBN: 978-1-62708-318-8
Abstract
Casting is the most economical processing route for producing titanium parts, and unlike most metals, the properties of cast titanium are on par with those of wrought. This chapter covers titanium melting and casting practices -- including vacuum arc remelting, consumable electrode arc melting, electron beam hearth melting, rammed graphite mold casting, sand casting, investment casting, hot isostatic pressing, weld repair, and heat treatment -- along with related equipment, process challenges, and achievable properties and microstructures. It also explains how titanium parts are produced from powders and how the different methods compare with each other and with conventional production techniques. The methods covered include powder injection molding, spray forming, additive manufacturing, blended elemental processing, and rapid solidification.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490415
EISBN: 978-1-62708-340-9
Abstract
Combustion turbines consist of a compressor, a combustor, and a turbine. As commonly configured, the compressor and turbine mount on a single shaft that connects directly to a generator. This chapter reviews the materials of construction, damage mechanisms, and life-assessment techniques for nozzles and buckets. It also presents key information from a detailed review of the literature and the results of a survey on combustion-turbine material problems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230523
EISBN: 978-1-62708-298-3
1