Skip Nav Destination
Close Modal
By
Manas Shirgaokar
Search Results for
product-process flow diagram
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 462
Search Results for product-process flow diagram
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2018
Image
Published: 01 December 2018
Image
Published: 01 December 2018
Image
Published: 01 December 2018
Image
in Process Control, Product Quality, and Product Launch Process
> Iron and Steel Castings Engineering Guide
Published: 01 January 2022
Image
in Process Control, Product Quality, and Product Launch Process
> Iron and Steel Castings Engineering Guide
Published: 01 January 2022
Book Chapter
Product Launch Process
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.aceg.t68410253
EISBN: 978-1-62708-280-8
..., product launch, and continuous improvement. This is followed by sections covering product-process flow diagrams and also the process elements considered for process failure mode and effects analysis. Some of the aspects covered by the engineering specifications to meet the product performance requirements...
Abstract
This chapter is a detailed account of various factors pertinent to the development and launch of a product. It begins by describing the five phases in the product launch process, namely product design and development, process design and development, product and process validation, product launch, and continuous improvement. This is followed by sections covering product-process flow diagrams and also the process elements considered for process failure mode and effects analysis. Some of the aspects covered by the engineering specifications to meet the product performance requirements are then reviewed. Details on product validation requirements and definitions of parameters related to the launch process are also provided. The chapter discusses the purpose of manufacturing control plan, along with an illustration of a manufacturing control plan outlined for a safety-critical suspension casting. It ends with an overview of the contents of a program launch manual.
Book Chapter
Process Control in the Aluminum Extrusion Plant
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 April 2025
DOI: 10.31399/asm.tb.aet2.t59420347
EISBN: 978-1-62708-487-1
... the extrusion to the final alloy and temper designation to meet the customer product requirements. Fig. 9.1 Process flow diagram showing major operational stages for the extrusion quality-control system Extrusion Plant and Processes Method of Operation In general, aluminum extrusions...
Abstract
In this chapter, process control of each operational stage is discussed, with a detailed process-control flow diagram to provide a better understanding and to create a process-control document of each operational process stage. This chapter also presents fundamental ideas of a complete process- and quality-control framework system of an aluminum extrusion plant, starting from alloy and billet making to the final heat treatment process parameters required to bring the extrusion to the final alloy and temper designation to meet product requirements.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040159
EISBN: 978-1-62708-300-3
... Abstract This chapter discusses the factors involved in the design of impression-die forging systems. It begins by presenting a flow chart illustrating the basic steps in the forging design process and a block diagram that shows how key forging variables are related. It then describes...
Abstract
This chapter discusses the factors involved in the design of impression-die forging systems. It begins by presenting a flow chart illustrating the basic steps in the forging design process and a block diagram that shows how key forging variables are related. It then describes the requirements of various forging alloys, the influence of machine operating parameters, and production challenges related to lot tolerances and shape complexity. The chapter also covers the design of finisher dies, the prediction of forging stresses and loads, and the design of preform dies for steel, aluminum, and titanium alloys.
Book Chapter
Process Control in the Aluminum Extrusion Plant
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260213
EISBN: 978-1-62708-336-2
... system, from billet casting to the heat treatment of extrusion. In this chapter, process control of each section is discussed, with detailed process control charts and flow diagrams of each process to provide a better understanding of each process stage. The main components of extrusion plants...
Abstract
This chapter provides guidelines on how to set up and run an effective quality-improvement program for aluminum extrusion operations. It begins by identifying production processes and variables that impact the quality of hard and soft alloy extrusions. It then presents a series of checklists and flowcharts that can be used to monitor and troubleshoot billet-making and extrusion processes, die construction, equipment maintenance, heat treating, and sawing and stretching procedures. It also discusses the importance of charting test results and monitoring surface treatments that may be required to improve corrosion, oxidation, or wear resistance.
Book Chapter
Process Control, Product Quality, and Product Launch Process
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320323
EISBN: 978-1-62708-332-4
... the specifications and that it can be shipped to the customer Casting producers equip themselves with capabilities for in-house testing; most quality confirmations are required to ensure product flow through the processes. Tests needed for product validation during the pilot stage are assigned to those...
Abstract
This chapter provides an overview of key elements in controlling the casting process, systems to confirm the quality of outgoing components, and the steps needed to launch a novel product. The discussion also provides information on process control tools and techniques; incoming material control; process control of sand preparation and system maintenance; metallic charge materials; product quality control; and melting, metallurgical, and mechanical testing.
Book Chapter
Identifying Potential Failure Causes
Available to PurchaseBook: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780025
EISBN: 978-1-62708-268-6
... Flow charting involves preparing a block diagram showing how the product or process works. ( Figure 4.3 shows a flow chart for the light bulb used in the earlier examples). The failure analysis team starts with the action or activity that initiates the process or the product functioning and then shows...
Abstract
In the second step of the four-step problem-solving process, the failure analysis team should identify all potential failure causes. This chapter discusses the steps involved in five such techniques for identifying potential causes of failure, namely brainstorming, mind mapping, Ishikawa diagrams, the “five whys” technique, and flow charting.
Book Chapter
Casting Manufacturing Layout—Principles and Guidelines
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 November 2023
DOI: 10.31399/asm.tb.ceeg.t59370001
EISBN: 978-1-62708-447-5
..., while at all times ensuring the safety of operators. General guidelines for developing a layout include: Generating a Product-Process Flow Diagram ( Ref 1 ; see also the Appendix at the end of this chapter). This figure outlines the product movement as it traverses through the different...
Abstract
Planning and laying out casting facilities involve a number of vital factors, such as available infrastructure, selection of suitable sites, orientation of operations and process flow, markets and products, operating parameters, and targeted hourly output and annual capacity. This chapter presents guiding principles and layout concepts with these factors in mind. It also presents steps for the creation of a plant layout. Plant layout involves the arrangement of processing areas, machinery, and equipment for the efficient conversion of raw materials into finished products. The chapter discusses general guidelines for developing a layout.
Book Chapter
Statistical Process and Quality Control
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 March 2000
DOI: 10.31399/asm.tb.aet.t68260233
EISBN: 978-1-62708-336-2
... shown in Fig. 6 in Chapter 8 . For all checkpoints, the collected data should be analyzed with a suitable statistical method. The case of “extrusion process parameters and die variables” shown in Fig. 3 is an example. Fig. 3 Flow diagram of statistical quality control for extrusion die...
Abstract
This chapter provides an introduction to statistical process control and the concept of total quality management. It begins with a review of quality improvement efforts in the extrusion industry and the considerations involved in developing sampling plans and interpreting control charts. It then lays out the steps that would be followed in order to implement statistical testing for billet casting, die performance, or any other process or variable that impacts extrusion quality. The chapter concludes with an overview of the fundamentals of total quality management.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230493
EISBN: 978-1-62708-298-3
... Abstract This chapter describes a process for recovering beryllium from industrial waste associated with beryllium-copper production. It presents several detailed flowsheets along with typical operating parameters such as flow rates, chemical concentrations, particle sizes, and compositional...
Abstract
This chapter describes a process for recovering beryllium from industrial waste associated with beryllium-copper production. It presents several detailed flowsheets along with typical operating parameters such as flow rates, chemical concentrations, particle sizes, and compositional ranges.
Image
Closed-die forging with flash. (a) Schematic diagram with flash terminology...
Available to PurchasePublished: 01 November 2013
Fig. 12 Closed-die forging with flash. (a) Schematic diagram with flash terminology. (b) Forging sequence in closed-die forging of connecting rods. Source: Ref 9 Definition In this process, a billet is formed (hot) in dies (usually with two halves) such that the flow of metal from
More
Book Chapter
Post-Failure-Analysis Activities
Available to PurchaseBook: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780189
EISBN: 978-1-62708-268-6
... analysis library. This library should be available as a reference tool to prevent future failures and to assist other failure analysis efforts on similar products. The library can be organized along product lines, processes, customers, or other factors significant to each business. Design and Process...
Abstract
At the conclusion of a systems failure analysis, the people involved should have a much more in-depth understanding of how the system is supposed to work. The analysis should help understand shortfalls in the design, production, testing, and use of the system. The failure analysis team will have identified other potential failure causes and actions required to preclude future failures. This is valuable knowledge, and it should not be set aside or ignored when the failure analysis team concludes its activities. This chapter is a brief account of the creation of failure analysis libraries, of process guidelines based on previous failure analyses, and of troubleshooting and repair guidelines. Also provided is a listing of the various steps that should be included in a failure analysis procedure.
Book Chapter
Induction Heating Plants
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 31 December 2024
DOI: 10.31399/asm.tb.hisppa.t56110067
EISBN: 978-1-62708-483-3
... is made to heat-sensitive materials, or to quicken production lines. Filler metal joining processes such as soldering and brazing use systems of up to approximately 100 kW. Concurrently, the low frequencies are preferred largely when the required power level exceeds approximately 10 kW. Figure 5.2...
Abstract
This chapter provides a discussion on the power supplies of modern induction heating plants. It describes the mode of operation and functional principle of an inverter. The chapter also provides a short note on generator cooling, which is required for the components of the induction power supply. It then presents an overview of induction heating systems.
Book Chapter
Extrusion Die and Tooling
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 April 2025
DOI: 10.31399/asm.tb.aet2.t59420107
EISBN: 978-1-62708-487-1
... and processes are shown in the flow diagram in Fig. 4.24 . The FEM tool can help to generate an optimized die design parameter that can create a CAD file to move to the next step of CAM. Advanced computer numerical controlled (CNC) machining technology combined with FEM die design analysis allows the die...
Abstract
This chapter discusses many aspects of extrusion die and tooling, including the terminology and function of extrusion die and tooling, the types of dies, the fundamentals of die design, manufacturing, correction, material, and the surface treatments of die bearings and tribology in extrusion dies. It then presents the fundamentals and function of finite-element modeling simulation. The chapter describes the role of tribology and thermodynamics in the die bearing to control the flow and dimensional stability of extrusion exiting the die.
Book Chapter
Forging Processes: Variables and Descriptions
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040007
EISBN: 978-1-62708-300-3
... by (a) tool geometry, (b) friction conditions, (c) characteristics of the stock material, and (d) thermal conditions existing in the deformation zone. The details of metal flow influence the quality and the properties of the formed product and the force and energy requirements of the process. The mechanics...
Abstract
This chapter explains that the key to forging is understanding and controlling metal flow and influential factors such as tool geometry, the mechanics of interface friction, material characteristics, and thermal conditions in the deformation zone. It also reviews common forging processes, including closed-die forging, extrusion, electrical upsetting, radial forging, hobbing, isothermal forging, open-die forging, orbital forging, and coining.
1