Skip Nav Destination
Close Modal
Search Results for
probability of false alarm
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-6 of 6 Search Results for
probability of false alarm
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720345
EISBN: 978-1-62708-305-8
..., the feeding of tubes to the unit and their withdrawal can be automated. Various audible and visible alarm systems and marking devices can be added. Normally, the water couplant used in the system is filtered and deaerated. Air entrapped in the water can produce false indications. Similarly, water...
Abstract
Wrought tubular products are nondestructively inspected chiefly by eddy current techniques (including the magnetic flux leakage technique) and by ultrasonic techniques. The methods discussed in this chapter include eddy current inspection, flux leakage inspection, ultrasonic inspection, magnetic particle inspection, liquid penetrant inspection, and radiographic inspection of resistance welded tubular products, seamless steel tubular products, and nonferrous tubular products. This chapter discusses the fundamental factors that should be considered in selecting a nondestructive inspection method and in selecting from among the commercially available inspection equipment. The factors covered are product characteristics, nature of the flaws, extraneous variables, rate of inspection, end effect, mill versus laboratory inspection, specification requirements, equipment costs, and operating costs.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720183
EISBN: 978-1-62708-305-8
... not result from the presence of flaws. The term false indications is sometimes used to describe this type of indication, because the indication falsely implies the presence of a flaw, even though the particle buildup actually results from a leakage field. There are several possible causes of nonrelevant...
Abstract
Liquid penetrant, magnetic particle, and eddy current inspection are used to detect surface flaws. This chapter is a detailed account of the physical principles, process description, equipment requirements, selection criteria, advantages, limitations, and applications of these surface flaw detection techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720365
EISBN: 978-1-62708-305-8
... to where the wire is attached to it, the wire is released and springs out against the side of the crucible, thus serving as an alarm to stop the melting. A disadvantage of this practice is that the wire may become detached and contaminate the melt. Many of the types of flaws that can occur in forgings...
Abstract
In forgings of both ferrous and nonferrous metals, the flaws that most often occur are caused by conditions that exist in the ingot, by subsequent hot working of the ingot or the billet, and by hot or cold working during forging. The inspection methods most commonly used to detect these flaws include visual, magnetic particle, liquid penetrant, ultrasonic, eddy current, and radiographic inspection. This chapter provides a detailed discussion on the characteristics, process steps, applications, advantages, and limitations of these methods. It also describes the flaws caused by the forging operation and the principal factors that influence the selection of a nondestructive inspection method for forgings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400087
EISBN: 978-1-62708-258-7
... described previously; and a full-scale laboratory associated with a research department of a major steel company, with a team of two to four metallographers (also described previously). These are probably the extreme examples of a metallographic laboratory. Most laboratories fall somewhere in between...
Abstract
This chapter discusses the important role of metallography and the metallographer in predicting and understanding the properties of metals and alloys. Examples are presented of a metallographer working as part of a team in a research laboratory of a large steel company and a metallographer working alone at a small iron foundry. The three basic areas in all metallography laboratories are discussed: the specimen preparation area, the polishing/etching area, and the observation/micrography area. Important safety issues in a metallographic laboratory are also considered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850060
EISBN: 978-1-62708-260-0
.... If a wheel stops cutting, it probably has become glazed with specimen material. Rather than cut, it generates heat and damages the sample. This problem is usually encountered when a hard rubber-bonded alumina wheel is used to cut a hard material. The hardness code on the wheel should be checked before...
Abstract
This chapter explains how to prepare metallographic samples for light microscopy and how to anticipate and avoid related problems. It describes standard practices and procedures for sectioning, mounting, grinding, and polishing and identifies common defects along with their causes and cures. It also provides recommendations for handling specific materials and addresses safety concerns.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.9781627082600
EISBN: 978-1-62708-260-0