Skip Nav Destination
Close Modal
By
Hugh Reynolds
By
Sotiris Koussios
By
S.T. Peters
Search Results for
pressure vessel design
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 325
Search Results for pressure vessel design
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Pressure Vessel Design, Fabrication, Analysis, and Testing
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860115
EISBN: 978-1-62708-338-6
... of the composite pressure vessel. composites filament winding pressure vessel design pressure vessels rocket motor cases Introduction Composite filament-wound pressure vessels were begun for solid rocket motor cases (RMCs), which were primarily responsible for accelerating filament winding from...
Abstract
The necessity of developing the lightest-weight structures with sufficient strength was the driving factor for the development of filament-wound composite pressure vessels. This chapter presents a brief history of the development of rocket motor cases (RMCs), followed by a comparison of the advantages of composites over metals for RMCs. A discussion on a typical design, analysis, and manufacturing operation follows. The chapter introduces the basic design approach and shows some sizing techniques along with example calculations. It discusses the processes involved in the testing of the composite pressure vessel.
Image
Cross section of pressure vessel design showing added padding to feed an is...
Available to PurchasePublished: 01 December 1995
Fig. 7-4 Cross section of pressure vessel design showing added padding to feed an isolated heavy section (2)
More
Book Chapter
Integral Design for Filament Winding—Materials, Winding Patterns, and Roving Dimensions for Optimal Pressure Vessels
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860019
EISBN: 978-1-62708-338-6
... Abstract This chapter outlines a methodology for the design of cylindrical pressure vessels, with emphasis on the establishment of winding patterns and the interaction between the real fiber bed geometry (finite roving dimensions) and the theoretical one. To highlight the materials-shape...
Abstract
This chapter outlines a methodology for the design of cylindrical pressure vessels, with emphasis on the establishment of winding patterns and the interaction between the real fiber bed geometry (finite roving dimensions) and the theoretical one. To highlight the materials-shape/pattern-roving interaction, an outline of the basic principles of pressure vessel design is provided. After a short section on laminate thickness approximation techniques (essential for establishing a range of acceptable roving dimensions), the chapter concludes with an example demonstrating the methodology from an initial set of design parameters up to the final stage, including patterns, roving dimensions, and production time minimization.
Image
Published: 01 September 2011
(allows differential movement of boss and windings) Skirt-to-pressure-vessel design concept: Integral or secondary attach Hoop angle (fiber angle near 90° to axis of motor) α is the local helical or polar angle (fiber angle to the axis of the pressure vessel) Discrete number of layers One
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860001
EISBN: 978-1-62708-338-6
... not eliminate the need for proper fiber handling. This chapter is a primer on modern filament winding equipment and its use, starting with an overview of machine control and then discussing the design and structural analysis of filament wound components such as pressure vessels, pipes, grid structures, deep sea...
Abstract
Most filament winding machines now have computer controls and at least three axes. Winding with four axes is increasingly common because the shapes of the products have evolved to include more complexity. The automation used on the winding machine and ancillary components does not eliminate the need for proper fiber handling. This chapter is a primer on modern filament winding equipment and its use, starting with an overview of machine control and then discussing the design and structural analysis of filament wound components such as pressure vessels, pipes, grid structures, deep sea oil platform drill risers, high-speed rotors, and filament-wound preforms.
Book Chapter
Introduction to Fatigue and Fracture
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610001
EISBN: 978-1-62708-303-4
.... Such bases are usually provided by analyses, accelerated testing in the laboratory, and with prototype and model testing. As part of the life-assessment process, it is important to understand how a structural component—whether a pressure vessel, shaft, or structural member—is designed in order to understand...
Abstract
This chapter provides a brief review of industry’s battle with fatigue and fracture and what has been learned about the underlying failure mechanisms and their effect on product lifetime and service. It recounts some of the tragic events that led to the discovery of fatigue and brittle fracture and explains how they reshaped design philosophies, procedures, and tools. It also discusses the influence of material and manufacturing defects, operating conditions, stress concentration and intensity, temperature and pressure, and cyclic loading, all of which play a role in the onset of fatigue cracking and thus should be considered when predicting useful product life.
Book
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.9781627083386
EISBN: 978-1-62708-338-6
Book Chapter
Petroleum Reactor Pressure-Vessel Materials for Hydrogen Service
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490329
EISBN: 978-1-62708-340-9
.... Reactor pressure vessels are designed, fabricated, and inspected in accordance with the ASME Boiler and Pressure Vessel Code. Material specifications listed in the code cover (1) the strengths necessary to guarantee allowable stresses, including room- and design-temperature tensile, creep, and fatigue...
Abstract
This chapter covers the failure modes and mechanisms of concern in hydroprocessing reactor vessels and the methods used to assess lifetime and performance. It begins with a review of the materials used in the construction of pressure-vessel shells, the challenges they face, and the factors that determine shell integrity. The discussion addresses key properties and design parameters including allowable stress, fracture toughness, the effect of microstructure and composition on embrittlement, high-temperature creep, and subcritical crack growth. The chapter also provides information on the factors that affect cladding integrity and ends with a section on life-assessment techniques.
Book Chapter
Aerospace Applications—Example Fatigue Problems
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.fdmht.t52060231
EISBN: 978-1-62708-343-0
... would be accepted for service. A common level of overpressurization is 50% above the nominal operating design pressure (proof factor = 1.5). For the vessel under consideration, it was determined by the junior author of this volume that such a high proof factor could do more harm than good. Consequently...
Abstract
This chapter explains how the authors assessed the potential risks of creep-fatigue in several aerospace applications using the tools and techniques presented in earlier chapters. It begins by identifying the fatigue regimes encountered in the main engines of the Space Shuttle. It then describes the types of damage observed in engine components and the methods used to mitigate problems. It also discusses the results of analyses that led to changes in design or approach and examines fatigue-related issues in turbine engines used in commercial aircraft.
Book Chapter
Introduction and Overview
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 1989
DOI: 10.31399/asm.tb.dmlahtc.t60490001
EISBN: 978-1-62708-340-9
... and environmental behavior of the materials for normal operation, process upset, and shutdown conditions have to be taken into account. Since fabrication involves extensive welding, the properties of the weldments are of great importance. It is common practice to design, fabricate, and inspect pressure vessels...
Abstract
The ability to accurately assess the remaining life of components is essential to the operation of plants and equipment, particularly those in service beyond their design life. This, in turn, requires a knowledge of material failure modes and a proficiency for predicting the near and long term effects of mechanical, chemical, and thermal stressors. This chapter presents a broad overview of the types of damage to which materials are exposed at high temperatures and the approaches used to estimate remaining service life. It explains how operating conditions in power plants and oil refineries can cause material-related problems such as embrittlement, creep, thermal fatigue, hot corrosion, and oxidation. It also discusses the factors and considerations involved in determining design life, defining failure criteria, and implementing remaining-life-assessment procedures.
Book Chapter
Static Mechanical Tests for Filament-Wound Composites
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860095
EISBN: 978-1-62708-338-6
... compaction is not necessary. One application survives with virtually 100% voids. An isotensoid liquefied petroleum gas pressure vessel ( Ref 8.15 ) is dry wound (no resin) over a thermoplastic liner and goes through a series of product tests. The operating pressure is 8 to 10 bar (116 to 145 psi...
Abstract
The objective of mechanical testing of an engineered material is to provide data necessary for the analysis, design, and fabrication of structural components using the material. The testing of filament-wound composite materials offers unique challenges because of the special characteristics of composites. This chapter describes suitable static mechanical test techniques for characterizing laminated composite materials. The approach is to provide recommended techniques, based on consensus opinions of fabricators and users of filament-wound composites, and to survey available techniques that have been used successfully in the field. The chapter describes the effects of various factors on the properties of composite constituents, including fibers, resins, and unidirectional plies. Some aspects of specimen selection are also described. The chapter provides information on pressure bottles and tubular parts that have been developed as standard test specimens for combined load testing of composites.
Book Chapter
Carbon and Low Alloy Steels for Pressure Containing and Structural Parts
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200233
EISBN: 978-1-62708-354-6
... Abstract The design stresses for most pressure-containing structural application, which are based upon minimum mechanical properties designated in the specifications published by the American Society for Testing and Materials (ASTM). This chapter reviews metallurgical characteristics...
Abstract
The design stresses for most pressure-containing structural application, which are based upon minimum mechanical properties designated in the specifications published by the American Society for Testing and Materials (ASTM). This chapter reviews metallurgical characteristics and their influence on the properties and performance of structural carbon and low alloy steels and contains a summary of the relevant features of the ASTM product specifications.
Book Chapter
Inspection, Data Collection, and Management
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030360
EISBN: 978-1-62708-282-2
.../uninspected areas Note design and operating pressures and temperatures and likely corrosion mechanisms Review vessel drawings for details and process drawings for process familiarization. Make an initial site visit in order to arrange preparation for the inspection Ensure preparations are made...
Abstract
This chapter concentrates almost exclusively on inspection techniques related to pressure vessels and pipework. The discussion covers the general aspects associated with inspection and the key factors relevant to it. In addition, the chapter addresses processes involved in data collection and management, namely data acquisition, reporting, trending, reviewing, and auditing. Capabilities and limitations of in-service inspection techniques are discussed in the Appendix to this chapter.
Image
Design fatigue curves for 2¼Cr-1Mo steel, from Section VIII (Division 2) an...
Available to Purchase
in Life Prediction for Boiler Components
> Damage Mechanisms and Life Assessment of High-Temperature Components
Published: 01 December 1989
Fig. 5.13. Design fatigue curves for 2¼Cr-1Mo steel, from Section VIII (Division 2) and Code Case N-47 of the ASME Boiler and Pressure Vessel Code ( Ref 27 ).
More
Book Chapter
Manufacturing Design Considerations
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200115
EISBN: 978-1-62708-354-6
... riser above the flange. Other examples of padding used to aid feeding and promote soundness are shown in Figure 7-5 . Fig. 7-4 Cross section of pressure vessel design showing added padding to feed an isolated heavy section (2) Fig. 7-5 Examples of padding for enhancement of riser...
Abstract
This chapter explains various aspects of the foundry process that the design engineer should consider when designing steel castings. It discusses special feeding aids, such as tapers, padding, ribs, and chills that may be used by foundry personnel to promote directional solidification. The chapter addresses the design of castings to reduce the occurrence of internal shrinkage. It provides a detailed discussion on design considerations for molding, cleaning, machining, and function.
Book Chapter
Fracture Mechanics
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 30 November 2013
DOI: 10.31399/asm.tb.uhcf3.t53630257
EISBN: 978-1-62708-270-9
... approach is used where the rate of crack growth, labeled da/dN , is measured as a function of the K range during loading, Δ K . Fracture mechanics can be used to aid in the design and predict service life of pressure vessels and other engineering structures in which subcritical flaw growth or time...
Abstract
Fracture mechanics is a well-developed quantitative approach to the study of failures. This chapter discusses fracture toughness and fracture mechanics, linear-elastic fracture mechanics, and modes of loading. The discussion also covers plane strain and stress and crack growth kinetics. The chapter presents a case history that illustrates the use of fracture mechanics in failure analysis. An appendix provides a more detailed discussion of fracture mechanics concepts.
Book Chapter
Ion Nitriding Equipment
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900089
EISBN: 978-1-62708-350-8
... will stop. Cathode and Anode The vacuum vessel acts as the anode potential, and the furnace hearth is attached to a specially designed and insulated power feedthrough, which in turn is connected to the dc power source. The principal concern with the power feedthrough is that it be insulated...
Abstract
Ion nitriding equipment can be categorized into two groups: cold-wall continuous direct current (dc) equipment and hot-wall pulsed dc equipment. This chapter focuses on these two categories along with other important considerations for ion (plasma) nitriding equipment and processing. Other important considerations discussed include the hollow cathode effect, sputter cleaning, furnace loading, pressure/voltage relationships, workpiece masking, and furnace configuration options. The chapter describes five methods of cooling parts from the process temperature to an acceptable exposure temperature after plasma nitriding. The chapter also presents some of the advantages of the pulsed plasma process.
Book Chapter
Glossary of Filament-Winding Terms
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860151
EISBN: 978-1-62708-338-6
.... These are typically plastics, a winding pattern so designed that used for pressure vessels. the stresses in all filaments are equal. B-stage. An intermediate stage in the reaction of certain thermosetting resins in which the material swells when in contact with certain liquids and softens when heated, but may...
Abstract
This appendix is a compilation of terms and definitions related to composite filament winding.
Book Chapter
Leaks
Available to PurchaseBook: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780131
EISBN: 978-1-62708-268-6
... be inappropriate for the temperature or pressure environment. The failure analysis team can check with the epoxy or adhesive manufacturer to confirm the use of an appropriate sealant. Weld Leaks Pressure vessels and other tanks often have weld joints, which provide a structural connection as well...
Abstract
Leaks can occur as the result of several failure causes. This chapter reviews the causes, features, and impact of various types of leaks, namely gasket leaks, O-ring leaks, bond-joint leaks, weld leaks, polyvinyl chloride leaks, valve leaks, and structural leaks.
Book Chapter
Corrosion Control by Proper Design
Available to PurchaseSeries: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910301
EISBN: 978-1-62708-250-1
... (b) designs for vessels used for mixing concentrated and dilute solutions. Poor design causes concentration and uneven mixing of incoming chemicals along the vessel wall (circled areas). Good design allows concentrated solutions to mix away from vessel walls. Poor design of heaters can create...
Abstract
The design process is the first and most important step in corrosion control. Major savings in operating costs are possible by anticipating corrosion problems so as to provide proper design for equipment before assembly or construction begins. This chapter describes the role of the design team in producing a successful final design, general considerations in corrosion-control design, and design details that accelerate corrosion. The details that must be considered when attempting to control corrosion by design include plant/site location, plant environment, component/assembly shape, fluid movement, surface preparation and coating procedures, and compatibility, insulation, and stress considerations. Design solutions for specific forms of corrosion, namely crevice corrosion, galvanic corrosion, erosion-corrosion, and stress-corrosion cracking, are then considered. A brief section is devoted to the discussion on corrosion allowance used for steel parts subject to uniform corrosion. Finally, the chapter describes the design considerations for using weathering steels.
1