Skip Nav Destination
Close Modal
Search Results for
preheat temperature
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 272 Search Results for
preheat temperature
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2004
Fig. 7 Typical “on-cooling” Gleeble curves of specimen reduction of area as a function of test and preheat temperatures with typical hot-workability ratings indicated
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440191
EISBN: 978-1-62708-262-4
...–1500) 775–800 (1425–1475) Rate of cooling, °C (°F) max per hour 22 (40) 22 (40) 14 (25) Typical annealed hardness, HB 156–201 183–229 192–229 Hardening Rate of heating Slowly Slowly Slowly Preheat temperature, °C (°F) (a) 650 (1200) 760 (1400) Hardening temperature...
Abstract
Tool steels represent a small, but very important, segment of the total production of steel. Their principal use is for tools and dies that are used in the manufacture of commodities. For the most part, the processes used for heat treating carbon and alloy steels are also used for heat treating tool steels, that is, annealing, austenitizing, tempering, and so forth. This chapter focuses on these heat treating processes of tool steels. Classification and approximate compositions and heating treating practices of some principal types of tool steels are provided. The steel types discussed include water-hardening; shock-resisting; oil-hardening cold-work; air-hardening, medium-alloy cold-work; high-carbon, high-chromium cold-work; low-alloy, special-purpose; mold; hot-work; and high-speed tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060209
EISBN: 978-1-62708-355-3
... of specimen reduction of area as a function of test and preheat temperatures with typical hot-workability ratings indicated Fig. 5 Typical examples of heating methods for load-frame tensile testing. (a) Induction heating. (b) Environmental chamber. (c) Split-furnace setup Fig. 6 Initial...
Abstract
This chapter focuses on short-term tensile testing at high temperatures. It emphasizes one of the most important reasons for conducting hot tensile tests: the determination of the hot working characteristics of metallic materials. Two types of hot tensile tests are discussed in this chapter, namely, the Gleeble test and the conventional isothermal hot-tensile test. The discussion covers equipment used and testing procedures for the Gleeble test along with information on hot ductility and strength data from this test. The chapter describes the stress-strain curves, material coefficients, and flow behavior determined in the isothermal hot tensile test. It also describes three often-overlapping stages of cavitation during tensile deformation, namely, cavity nucleation, growth of individual cavities, and cavity coalescence.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930071
EISBN: 978-1-62708-359-1
... for C ≤ 0.3% and %C* = %C/6 + 0.25 for %C > 0.3%. The critical time length in seconds, τ 8/5 , for the avoidance of martensitic transformation is given as: (Eq 9) log τ 8 / 5 = 2.69 CE* + 0.321 When this quantity is known, welding parameters and preheat temperature...
Abstract
The formation of defects in materials that have been fusion welded is a major concern in the design of welded assemblies. This article describes four types of defects that, in particular, have been the focus of much attention because of the magnitude of their impact on product quality. Colloquially, these four defect types are known as hot cracks, heat-affected zone microfissures, cold cracks, and lamellar tearing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310285
EISBN: 978-1-62708-326-3
... to the austenitizing temperature in one rapid step, both the thermal expansion stress and the phase change stress occur simultaneously in different areas of the workpiece, and with many types of tool steels, these combined stresses may cause cracking. The object of preheating is to induce these stresses one at a time...
Abstract
The possible classification for tool steels is their division into four groups according to their final application: hot-worked, cold-worked, plastic mold, and high-speed tool steels. This chapter mainly follows such division by application, but the grade nomenclatures used here are primarily from AISI. It presents the classification of tool steels and discusses the principles and processes of tool steel heat treating, namely normalizing, annealing, hardening, and tempering. Various factors associated with distortion in several tool steels are also covered. The chapter discusses the composition, classification, and properties of unalloyed and low-alloy cold-worked tool steels; medium and high-alloy cold-worked tool steels; and 18% nickel maraging steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200369
EISBN: 978-1-62708-354-6
... composition and heat treatment. Carbon steels having low manganese and silicon contents (1.60% Mn, 1.00% Si), and a carbon content below 0.30%, can be welded without any special precautions. When the carbon content exceeds 0.30%, preheating of the casting prior to welding is advisable. The low-temperature...
Abstract
This chapter covers the basics of weldability of cast steels such as carbon and low alloy steels, corrosion-resistant high alloy steels, nickel-base alloys, heat-resistant high alloy steels, and wear-resistant high austenitic manganese steels. It provides an overview of weld overlay and hard facing; cast-weld construction; and plasma arc cutting and plasma arc welding. The chapter discusses different types of welding processes. These include shielded metal-arc welding, air carbon arc cutting process, gas tungsten-arc welding, gas metal-arc welding process, flux-cored arc welding, submerged arc welding, and electroslag and electro-gas welding.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930249
EISBN: 978-1-62708-359-1
... the rate of cooling. This allows more time for hydrogen to diffuse away from the weld area during cooling within the austenite range and, especially, following transformation to martensite. Preheating is generally carried out in the temperature range from 200 to 300 °C (400 to 600 °F). In multipass...
Abstract
Stainless steel base metals and the welding filler metals used with them are chosen on the basis of suitable corrosion resistance for the intended application. This article describes several constitution diagrams that that have been developed to predict microstructures and properties. This is followed by discussions of weldability, cracking, and the engineering properties of stainless steel welds, namely martensitic stainless steels, ferritic stainless steel welds, austenitic stainless steels, and duplex stainless steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930217
EISBN: 978-1-62708-359-1
... welding procedure factors that affect weldment properties. Preheat Temperature Preheating is the application of heat to the base metal immediately before welding, brazing, soldering, or cutting ( Ref 12 ). The preheat temperature depends on many factors, such as the composition and mass of the base...
Abstract
This article reviews the fundamental and specific factors that control the properties of steel weldments in both the weld metal and heat-affected zone (HAZ). The influence of welding processes, welding consumables, and welding parameters on the weldment properties is emphasized. The service properties of weldments in corrosive environments are considered and subjected to cyclic loading. The article summarizes the effects of major alloying elements in carbon and low-alloy steels on HAZ microstructure and toughness. It discusses the processes involved in controlling toughness in the HAZ and the selection of the proper filler metal. The article provides a comparison between single-pass and multipass welding and describes the effect of welding procedures on weldment properties and the effects of residual stresses on the service behavior of welded structures. It also describes the fatigue strength and fracture toughness of welded structures. The article reviews various types of corrosion of weldments.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130503
EISBN: 978-1-62708-284-6
... weldments has been studied for over a half-century, the mechanism of cracking is still uncertain. Fortunately, judicious “hydrogen management” has permitted the crack-free welding of high-strength steels primarily by preheating the weld to a temperature that must be increased with increasing...
Abstract
Failure analysis of steel welds may be divided into three categories. They include failures due to design deficiencies, weld-related defects usually found during inspection, and failures in field service. This chapter emphasizes the failures due to various discontinuities in the steel weldment. These include poor workmanship, a variety of hydrogen-assisted cracking failures, stress-corrosion cracking, fatigue, and solidification cracking in steel welds. Hydrogen-assisted cracking can appear in four common forms, namely underbead or delayed cracking, weld metal fisheyes, ferrite vein cracking, and hydrogen-assisted reduced ductility.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 February 2005
DOI: 10.31399/asm.tb.chffa.t51040247
EISBN: 978-1-62708-300-3
... for the development of a microstructure model. Real-scale tests were run to compare the model prediction with reality. Three sets of experiments were used in the model development. 19.2.1 Preheating Tests Heat treatment studies were conducted with different temperatures and hold times to produce...
Abstract
This chapter discusses the development and use of microstructure models for optimizing superalloy forging operations. It describes how the processes that control grain structure evolution during hot working were used in model formulation and compares predicted microstructures with experimental results.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900031
EISBN: 978-1-62708-350-8
... is the core of the steel, which consists of tempered martensite. All three regions—the white layer, diffusion zone, and core—are shown in Fig. 2 . Time Temperature Gas composition Preheat temperature Pressure Cutting fluids Oils for surface protection Fingerprints Paint...
Abstract
Formation of the nitrided case begins through a series of nucleated growth areas on the steel surface. These nucleating growth areas will eventually become what is known as the compound layer or, more commonly, the white layer. This chapter discusses the influence of carbon on the compound zone. It explains how to control and calculate compound zone thickness. Compound zone thickness can be controlled by dilution, the two-stage Floe process, or by ion nitriding. The chapter describes the factors affecting surface case formation.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930179
EISBN: 978-1-62708-359-1
...-Carbon Steels Steels containing from 0.25 to 0.60% C and 0.25 to 1.65% Mn are classified as medium-carbon steels. Based on their base-metal mechanical properties, the electrodes in AWS specification A5.1 usually suffice in most applications. The use of preheat, interpass temperature...
Abstract
This article describes the repair of weld defects and failed structures. It provides information on three factors that must first be considered before attempting a repair, namely material weldability, nature of the failure that prompted the repair, and involvement of any code requirements. The article discusses the processes involved in welding process selection and the methods of preparing base metal for repair welding. It presents the guidelines for weld repairs of various ferrous (carbon steels, cast irons, and stainless steels) and nonferrous (for example, titanium) base metals.
Image
Published: 31 December 2020
Fig. 7 Preheating, austenitizing, and quenching tool steel with one-, two-, or three-step preheat before austenitizing. Quench in temperature; W, water; O, oil; or A, air
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040010
EISBN: 978-1-62708-428-4
... processes is its carrier gas preheat temperatures in the range of 0 to 700 °C (32 to 1290 °F), a range that is generally lower than the melting temperature of the coating particle materials. The nozzle exit temperature is substantially lower than the gas preheat temperature, further lowering the temperature...
Abstract
This article provides a brief description of commercially important thermal spray processes and gives examples of applications and application requirements. The processes covered are flame, wire arc, plasma, high-velocity oxyfuel processes, detonation gun, and cold spray methods. Examples are provided of the applications in aerospace, automotive, and medical device industries as well as the use of thermal spray as an additive manufacturing technique.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930365
EISBN: 978-1-62708-359-1
... Abstract This appendix provides reference tables listing weldability of cast irons, steels, and nonferrous metals. A process selection table for arc welding carbon steels is included, and recommended preheat and interpass temperature tables are also presented. This appendix includes information...
Abstract
This appendix provides reference tables listing weldability of cast irons, steels, and nonferrous metals. A process selection table for arc welding carbon steels is included, and recommended preheat and interpass temperature tables are also presented. This appendix includes information on qualification codes and standards.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.9781627083591
EISBN: 978-1-62708-359-1
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900067
EISBN: 978-1-62708-358-4
... Table 5-3 Hardening and tempering temperatures and procedures for tool steels Type Rate of healing Hardening Time at temperature, min Quenching medium( a ) Tempering temperature Preheat temperature Hardening temperature °C °F °C °F °C °F Molybdenum high-speed steels M1...
Abstract
This chapter describes how the phases are arranged into desired microstructures during the heat treatment of tool steels. It describes the microstructural changes that are the objectives of the austenitizing, quenching, and tempering steps of tool steel hardening. The chapter covers austenite composition, retained austenite, and austenite grain size and grain growth. It provides information on the hardness and hardenability of tool steel. The chapter reviews some of these concepts and describes the microstructural appearance of the products of diffusion-controlled transformation of austenite. The role that diffusion-controlled phase transformations play relative to the hardenability of high-carbon and alloy tool steels is then emphasized. It presents general considerations of transformation diagrams, Jominy curves, and the hardenability of tool steels. The factors related to the kinetics and stabilization of martensite transformation are also covered. It briefly reviews selected aspects of the changes that evolve during tempering.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900023
EISBN: 978-1-62708-350-8
.... This chapter provides a detailed discussion on the liberation of nitrogen, dissociation of the gas at the selected nitriding temperature, why ammonia is used, distortion, and preheat treatment. References References 1. Grosch J. , Heat Treatment With Gaseous Atmospheres , Steel Heat Treatment...
Abstract
Several process parameters must be considered to ensure success in achieving desired metallurgical properties and to minimize distortion. This chapter provides a detailed discussion on the liberation of nitrogen, dissociation of the gas at the selected nitriding temperature, why ammonia is used, distortion, and preheat treatment.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820115
EISBN: 978-1-62708-339-3
... of the type 440 compositions are not readily available. Both preheating and postweld heat treatment (PWHT) are critical to successful welds. The usual preheating temperature range of martensitic steels is 200 to 300 °C (400 to 600 °F). The temperature varies according to the material composition...
Abstract
Martensitic stainless steels are essentially iron-chromium-carbon alloys that possess a body-centered tetragonal crystal structure (martensitic) in the hardened condition. Martensitic stainless steels are similar to plain carbon or low-alloy steels that are austenitized, hardened by quenching, and then tempered for increased ductility and toughness. This chapter provides a basic understanding of grade designations, properties, corrosion resistance, and general welding considerations of martensitic stainless steels. It also discusses the causes for hydrogen-induced cracking in martensitic stainless steels and describes sulfide stress corrosion resistance of type 410 weldments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930003
EISBN: 978-1-62708-359-1
... of bainite. This microstructure is characterized by excellent strength and fracture toughness. At slow weld cooling rates associated with high preheating temperatures or heat input, the amount of acicular ferrite decreases substantially and is replaced by a coarse structure of additional grain-boundary...
Abstract
It is well established that solidification behavior in the fusion zone controls the size and shape of grains, the extent of segregation, and the distribution of inclusions and defects such as porosity and hot cracks. Since the properties and integrity of the weld metal depend on the solidification behavior and the resulting microstructural characteristics, understanding weld pool solidification behavior is essential. This article provides a general introduction of key welding variables including solidification of the weld metal or fusion zone and microstructure of the weld and heat-affected zone. It discusses the effects of welding on microstructure and the causes and remedies of common welding flaws.
1