Skip Nav Destination
Close Modal
Search Results for
precipitation structures
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 711 Search Results for
precipitation structures
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 December 2008
Fig. 7.16 (a) Precipitated structure by ordinary phase separation. (b) Precipitated structure of inversion type by edge-critical separation. (c) Microstructure of a Fe-Cr-Co magnetic alloy aged in magnetic field. Photograph by M. Okada, M. Homma, H. Kaneko, and G. Thomas
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420087
EISBN: 978-1-62708-310-2
... and scale of eutectic structures, and the competitive growth of dendrites and eutectic colonies or cells. It also examines the different types of precipitation structures that form during slow cooling cycles. aluminum-silicon alloys eutectic systems lead-tin-alloys microstructure precipitation...
Abstract
This chapter begins by presenting a generic eutectic phase diagram and identifying critical points, lines, and features. It then describes the composition and properties of aluminum-silicon and lead-tin eutectic systems, the characteristics of eutectic morphologies, the solidification and scale of eutectic structures, and the competitive growth of dendrites and eutectic colonies or cells. It also examines the different types of precipitation structures that form during slow cooling cycles.
Image
Published: 01 November 2010
Fig. D.2 Structure: chainlike precipitate of M2(Cb,Ti). Laves phase in the gamma matrix. Optical microscope, original magnification 250x. Condition: Heat treated (solution annealed 2 h at 1095 °C (2000 °F), air cooled, reannealed 1 h at 980 °C (1800 °F), air cooled, aged 16 h at 720 °C
More
Image
Published: 01 November 2010
Fig. D.16 Structure is precipitates of M6C and “Co2W” intermetallic in a face-centered cubic matrix. Optical microscope, original magnification 500×. Condition: Solution treated and aged—solution annealed at 1205 °C (2200 °F) and aged 3400 h at 870 °C (1600 °F). Source: Ref 1 , 2
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.t56020001
EISBN: 978-1-62708-389-8
... planes, and dislocation passage through precipitates. It also points out important structure-property correlations. antisite defects Burgers vector edge dislocations Frenkel defects grain size impurities mechanical properties pinning Schottky defects screw dislocations solid solution...
Abstract
Alloying, heat treating, and work hardening are widely used to control material properties, and though they take different approaches, they all focus on imperfections of one type or other. This chapter provides readers with essential background on these material imperfections and their relevance in design and manufacturing. It begins with a review of compositional impurities, the physical arrangement of atoms in solid solution, and the factors that determine maximum solubility. It then describes different types of structural imperfections, including point, line, and planar defects, and how they respond to applied stresses and strains. The chapter makes extensive use of graphics to illustrate crystal lattice structures and related concepts such as vacancies and interstitial sites, ion migration, volume expansion, antisite defects, edge and screw dislocations, slip planes, twinning planes, and dislocation passage through precipitates. It also points out important structure-property correlations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280025
EISBN: 978-1-62708-267-9
... stabilizers. It explains how precipitates provide strength by impeding deformation under load. It also discusses the factors that influence grain size, shape, and orientation and how they can be controlled to optimize mechanical and physical properties. alloying elements crystal structure gamma double...
Abstract
This chapter describes the metallurgy of superalloys and the extent to which it can be controlled. It discusses the alloying elements, crystal structures, and processing sequences associated with more than a dozen phases that largely determine the characteristics of superalloys, including their properties, behaviors, and microstructure. It examines the role of more than 20 alloying elements, including phosphorus (promotes carbide precipitation), boron (improves creep properties), lanthanum (increases hot corrosion resistance), and carbon and tungsten which serve as matrix stabilizers. It explains how precipitates provide strength by impeding deformation under load. It also discusses the factors that influence grain size, shape, and orientation and how they can be controlled to optimize mechanical and physical properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310001
EISBN: 978-1-62708-286-0
... along with carbon and nitrogen. These impurity elements would otherwise also precipitate as compounds containing some chromium, potentially depleting chromium in the vicinity of their precipitation. The bcc structure of ferrite allows more rapid diffusion than does the fcc structure of austenite...
Abstract
Metallurgy, as discussed in this chapter, focuses on phases normally encountered in stainless steels and their characteristics. This chapter describes the thermodynamics and the three basic phases of stainless steels: ferrite, austenite, and martensite. Formation of the principal intermetallic phases is also covered. In addition, the chapter provides information on carbides, nitrides, precipitation hardening, and inclusions.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.9781627083898
EISBN: 978-1-62708-389-8
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2012
DOI: 10.31399/asm.tb.pdub.t53420339
EISBN: 978-1-62708-310-2
... reactions are shown in Fig. 16.1 . The reaction occurs when the initial phase composition (e.g., α 0 , β 0 , or I 0 ) transforms into a two-phase product that includes a new phase, or precipitate. The precipitate phase may differ in crystal structure, composition, and/or degree of long-range order from...
Abstract
This chapter discusses the basic principles of precipitation hardening, an important strengthening mechanism in nonferrous alloys as well as stainless steel. It begins with a detailed review of the theory of precipitation hardening, then describes its application to aluminum alloys and nickel-base superalloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170193
EISBN: 978-1-62708-297-6
... in vanadium-containing microalloyed steels to promote effective precipitate strengthening. Selected References Selected References • High-Strength Low-Alloy Steels: Status, Selection and Physical Metallurgy , Battelle Press , 1979 • High-Strength Structural and High-Strength Low-Alloy Steels...
Abstract
This article discusses the effect of alloying on high-strength low-alloy (HSLA) steels. It explains where HSLA steels fit in the continuum of commercial steels and describes the six general categories into which they are divided. It provides composition data for standard types or grades of HSLA steel along with information on available mill forms, key characteristics, and intended uses. The article explains how small amounts of alloying elements, particularly vanadium, niobium, and titanium, control not only the properties of HSLA steels, but also their manufacturability.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.t52000203
EISBN: 978-1-62708-312-6
... boundaries, angular porosity, and relatively fewer twin boundaries. Glyceregia etch Ferritic Stainless Steels Fig. 15 Photomicrograph of 1366 °C (2490 °F), hydrogen sintered 409L showing a predominantly coarse grain structure and fine precipitates of columbium compounds in the grain boundaries...
Abstract
This atlas contains images showing how sintering conditions (time, temperature, and atmosphere) and compaction pressure affect the microstructure of different types of stainless steel. It also includes images of stainless steel powders, fracture surfaces, and test specimens characterized by the presence of compounds, such as oxides, carbides, and nitrides, and various forms of corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000017
EISBN: 978-1-62708-313-3
... of grain structure, as in columnar-grained alloys, or by the elimination of grain boundaries as with single-crystal superalloys. dispersion strengthening precipitation hardening solid-solution hardening superalloys SUPERALLOYS ARE STRENGTHENED through three principal mechanisms: solid...
Abstract
This chapter discusses the metallurgical changes that occur and the improvements that can be achieved in superalloys through solid-solution hardening, precipitation hardening, and dispersion strengthening. It also explains how further improvements can be achieved through the control of grain structure, as in columnar-grained alloys, or by the elimination of grain boundaries as with single-crystal superalloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 May 2018
DOI: 10.31399/asm.tb.hma.t59250047
EISBN: 978-1-62708-287-7
... Abstract This chapter covers the early studies and various discoveries by metals researchers to study the internal structure of metals. The topics covered include light microscopy, phase diagrams, X-ray diffraction, principles of precipitation hardening, and dislocation theory...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.sap.t53000025
EISBN: 978-1-62708-313-3
..., which have regular layered interruptions in their close-packed structure. 4.2.1 γ′-Ni<sub>3</sub>(Al,Ti) The γ′-Ni 3 (Al,Ti) precipitate is undoubtedly the most useful and important strengthening phase in superalloys. Its yield strength increases with temperature up to 800 °C (1470 °F...
Abstract
The microstructure of superalloys is highly complex, with a large number of dispersed intermetallics and other phases that modify alloy behavior through their composition, morphology, and distribution. This chapter provides an overview of the most notable phases, including the matrix phase and geometrically and topologically close-packed phases, and describes how superalloy microstructure can be modified via heat treatments and directional solidification. It also discusses the role of carbides, borides, oxides, and nitrides and the detrimental effects of sulfocarbides.
Image
Published: 01 October 2011
Fig. 3.26 Coherent (left) and noncoherent (right) precipitation. (a) and (b), A coherent or continuous structure forms when any precipitate is very small. (c) and (d), Coherency is lost after the particle reaches a certain size and forms its own crysal structure. Then a real grain develops
More
Image
in Heat Treatment of Aluminum and Other Nonferrous Alloys
> Practical Heat Treating: Basic Principles
Published: 31 December 2020
Fig. 7 Coherent (left) and noncoherent (right) precipitation. (a) and (b) A coherent or continuous structure forms when any precipitate is very small. (c) and (d) Coherency is lost after the particle reaches a certain size and forms its own crystal structure. Then a real grain develops
More
Image
Published: 01 December 2001
Fig. 4 Coherent (left) and noncoherent (right) precipitation. (a) and (b) A coherent or continuous structure forms when any precipitate is very small. (c) and (d) Coherency is lost after the particle reaches a certain size and forms its own crystal structure. Then a real grain boundary
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060013
EISBN: 978-1-62708-261-7
... structure of metals and their role in mechanical deformation, annealing, precipitation, and diffusion. It describes the concept of solid solutions and the effect of temperature on solubility and phase transformations. The chapter also discusses the formation of solidification structures, the use...
Abstract
This chapter introduces many of the key concepts on which metallurgy is based. It begins with an overview of the atomic nature of matter and the forces that link atoms together in crystal lattice structures. It discusses the types of imperfections (or defects) that occur in the crystal structure of metals and their role in mechanical deformation, annealing, precipitation, and diffusion. It describes the concept of solid solutions and the effect of temperature on solubility and phase transformations. The chapter also discusses the formation of solidification structures, the use of equilibrium phase diagrams, the role of enthalpy and Gibb’s free energy in chemical reactions, and a method for determining phase compositions along the solidus and liquidus lines.
Image
Published: 01 November 2010
. Replica electron micrograph showing islands of primary γ′ (A), a large particle of primary carbide (B), and dispersed particles of precipitated γ′ in γ matrix. (e) IN-738 nickel-base alloy, as cast. Structure consists of primary (eutectic) γ′ islands (shown at A), dispersed carbide particles (shown at B
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240135
EISBN: 978-1-62708-251-8
... and convert some of them to nuclei of a new phase. During the early phases of precipitation, the equilibrium phase does not immediately form, but an intermediate crystal structure related to it grows in close contact with the solid solution. As long as there tends to be atomic matching, or coherency, between...
Abstract
Precipitation hardening is used extensively to strengthen aluminum alloys, magnesium alloys, nickel-base superalloys, beryllium-copper alloys, and precipitation-hardening stainless steels. This chapter discusses two types of particle strengthening: precipitation hardening, which takes place during heat treatment; and true dispersion hardening, which can be achieved by mechanical alloying and powder metallurgy consolidation. It provides information on the three steps of precipitation hardening of aluminum alloys: solution heat treating, rapid quenching, and aging.
1