Skip Nav Destination
Close Modal
Search Results for
powder metallurgy stainless steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 59 Search Results for
powder metallurgy stainless steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2007
DOI: 10.31399/asm.tb.pmsspmp.9781627083126
EISBN: 978-1-62708-312-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740373
EISBN: 978-1-62708-308-9
...: Ref 9 Table 3 Application of powder processing methods Properties Method Conventional die compaction Metal injection molding Hot isostatic pressing Powder forging Material Steel, stainless steel, brass, copper Steel, stainless steel Superalloys, titanium, stainless steel...
Abstract
This chapter covers the basic steps of the powder metallurgy process, including powder manufacture, powder blending, compacting, and sintering. It identifies important powder characteristics such as particle size, size distribution, particle shape, and purity. It compares and contrasts mechanical, chemical, electrochemical, and atomizing processes used in powder production, discusses powder treatments, and describes consolidation techniques along with secondary operations used to obtain special properties or improve dimensional precision. It also discusses common defects such as ejection cracks, density variations, and microlaminations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280117
EISBN: 978-1-62708-267-9
.... All powder handling is performed in such a way as to minimize the possibility of introducing foreign material into the powder. This involves the use of specially designed stainless steel containers, valves, and inert handling of powder in clean rooms. Of course, powder will need to be screened to get...
Abstract
Gas turbine disks made from nickel-base superalloys are often produced using powder metallurgy (P/M) techniques because the alloy compositions normally used are difficult or impractical to forge by conventional methods. This chapter discusses the P/M process and its application to superalloys. It describes the gas, vacuum, and centrifugal atomization processes used to make commercial superalloy powders. It explains how the powders are consolidated into preforms or billets using hot isostatic pressing, extrusion, or a combination of the two. It also provides information on spray forming and consolidation by atmospheric pressure, and includes a section on powder-based disk components, where it discusses the general advantages of P/M as well as the effects of inclusions, carbon contamination, and the formation of oxide and carbide films due to prior particle boundary conditions. The chapter concludes with a detailed discussion on mechanically alloyed superalloy compositions, the product forms into which they are made, and some of the applications where they are used.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130395
EISBN: 978-1-62708-284-6
... muffle material. For stainless steels, proper sintering is critical for proper corrosion resistance (Ref 2) . Powder metallurgy parts with relatively low combined carbon contents of up to 0.20 wt% can be carburized by conventional pack or gas methods. Liquid carburizing is not recommended...
Abstract
This chapter reviews failure aspects of structural ferrous powder metallurgy (PM) parts, which form the bulk of the PM industry. The focus is on conventional PM technology of parts in the density range of 6 to 7.2 g/cc. The chapter briefly introduces the processing steps that are essential to understanding failure analysis of PM parts. This is followed by a section on case hardening of PM parts. The methods used for analyzing the failures are then discussed. Some case studies are given that illustrate different failures and the methods of prevention of these failures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.9781627082617
EISBN: 978-1-62708-261-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280025
EISBN: 978-1-62708-267-9
... wrought includes powder metallurgy processing) macrostructures. In addition to macrostructure, there are crystal structure (on an atomic level) and microstructure (visible under the microscope). Metals tend to have relatively simple crystal structures. When hard sphere models representing the crystal...
Abstract
This chapter describes the metallurgy of superalloys and the extent to which it can be controlled. It discusses the alloying elements, crystal structures, and processing sequences associated with more than a dozen phases that largely determine the characteristics of superalloys, including their properties, behaviors, and microstructure. It examines the role of more than 20 alloying elements, including phosphorus (promotes carbide precipitation), boron (improves creep properties), lanthanum (increases hot corrosion resistance), and carbon and tungsten which serve as matrix stabilizers. It explains how precipitates provide strength by impeding deformation under load. It also discusses the factors that influence grain size, shape, and orientation and how they can be controlled to optimize mechanical and physical properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550223
EISBN: 978-1-62708-307-2
... grades of commercially pure titanium and alpha and near-alpha, alpha-beta, and beta titanium alloys. It describes primary and secondary fabrication processes, including melting, forging, forming, heat treating, casting, machining, and joining as well as powder metallurgy and direct metal deposition. It...
Abstract
Titanium is a lightweight metal used in a growing number of applications for its strength, toughness, stiffness, corrosion resistance, biocompatibility, and high-temperature operating characteristics. This chapter discusses the applications, metallurgy, properties, compositions, and grades of commercially pure titanium and alpha and near-alpha, alpha-beta, and beta titanium alloys. It describes primary and secondary fabrication processes, including melting, forging, forming, heat treating, casting, machining, and joining as well as powder metallurgy and direct metal deposition. It also compares and contrasts the properties of wrought, cast, and powder metal titanium products and discusses corrosion behaviors.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310123
EISBN: 978-1-62708-286-0
... Abstract This chapter discusses the metallurgy, phase structure, thermal processing, and applications of martensitic stainless steels. The phenomenon of martensite formation is explained. A table listing the compositions of martensitic stainless steels is also presented. martensitic...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310201
EISBN: 978-1-62708-286-0
... cutting speed, supplemental oxygen or nitrogen blast jets may be used. Stainless steels may also be cut using oxyfuel equipment if supplemental iron powder is used. Combustion of the iron increases the temperature, while the iron oxide helps flux the refractory chromium oxide. Thermally cut edges of...
Abstract
This chapter provides a basis for understanding the influence of stainless steel alloy composition and metallurgy on the welding process, which involves complex dynamics associated with melting, refining, and thermal processing. It begins with an overview of the welding characteristics of the categories of stainless steels, namely austenitic, duplex, ferritic, martensitic, and precipitation-hardening stainless steels. This is followed by a discussion of the selection criteria for materials to be welded. Various welding processes used with stainless steel are then described. The chapter ends with a section on some of the practices to ensure safety and weld quality.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 May 2018
DOI: 10.31399/asm.tb.hma.t59250093
EISBN: 978-1-62708-287-7
... strengths. Before 1895, there was no process for producing low-carbon chromium to be added to iron, an important factor in chromium steels. At this time, German chemist Hans Goldschmidt invented the thermite process, a process that combines chromium ore with aluminum powder to generate enough heat to...
Abstract
This chapter discusses the development of stainless steel. It begins with some information on the discovery of stainless steel. This is followed by a discussion on the most important patents issued for stainless steel. Applications of stainless steel beyond their original use in cutlery and tableware are then presented. Information on the development of alloys for specific applications and on the argon oxygen decarburization process is also provided. The chapter ends with a discussion on the major use for stainless steel after WWII.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870537
EISBN: 978-1-62708-314-0
... and slurry casting, liquid metal infiltration, spray deposition, powder metallurgy, extrusion, hot rolling, and forging. The chapter also provides information on continuous-fiber aluminum and titanium composites as well as particle-reinforced titanium and fiber metal (glass aluminum) laminates...
Abstract
This chapter discusses the advantages and disadvantages of metal matrix composites and the methods used to produce them. It begins with a review of the composition and properties of aluminum matrix composites. It then describes discontinuous composite processing methods, including stir and slurry casting, liquid metal infiltration, spray deposition, powder metallurgy, extrusion, hot rolling, and forging. The chapter also provides information on continuous-fiber aluminum and titanium composites as well as particle-reinforced titanium and fiber metal (glass aluminum) laminates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310233
EISBN: 978-1-62708-326-3
... forging, and powder metallurgy. Rolled stainless steels can be drawn, bent, extruded, or spun; they can be machined; and they can be joined by soldering, brazing, and welding. They include scores of standard compositions as well as proprietary variations and special alloys tailored to specific uses. They...
Abstract
This chapter discusses the composition and classification of stainless steels and focuses on the processes involved in heat treatment and applications of these steels. The wrought and the cast stainless steels covered are ferritic, austenitic, duplex (ferritic-austenitic), martensitic, and precipitation-hardening. In addition, information on special considerations for stainless steel castings is also provided. The heat treatment processes explained in the chapter are preheating, annealing, stress relieving, hardening, tempering, austenite conditioning, heat aging, and nitride surface hardening. Finally, some special considerations for stainless steel castings are discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310181
EISBN: 978-1-62708-286-0
... steels to meet the increasing demands of the machining industry. Today, tools are being made with a powder metallurgy process, by which ingots of compacted high-speed tool steel powders have more structural homogeneity and thus better wear and heat resistance. Powder metallurgy techniques produce even...
Abstract
This chapter focuses on the metallurgical factors governing the machinability of stainless steels. It begins by describing the chemistry, cleanliness, structure, processing history, and the cross-section size of the stock of the different grades of stainless steel. This is followed by a general description of the machining behavior of the stainless steel families, namely ferritic, martensitic, austenitic, precipitation hardening, duplex, and super stainless steels. The beneficial effect of controlled inclusions is then discussed. The chapter ends with a section providing information on high-speed tool steel and carbide tooling, along with tool coatings and coolants applicable to stainless steel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170210
EISBN: 978-1-62708-297-6
.... Consequently, the selection of the proper tool material for a given application often requires a tradeoff to achieve the optimum combination of properties. Most tool steels are wrought products, but powder metallurgy (P/M) processing, where gas-atomized powders are consolidated to full density by hot...
Abstract
This article provides an overview of tool steels, discussing their composition, properties, and behaviors. It covers all types and classes of wrought and powder metal tool steels, including high-speed steels, hot and cold-work steels, shock-resisting steels, and mold steels. It explains how the properties of these steels are determined by alloying elements, such as tungsten, molybdenum, vanadium, manganese, and chromium, and the presence of alloy carbides. It describes the types of carbides that form and how they contribute to wear resistance, toughness, high-temperature strength, and other properties.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550141
EISBN: 978-1-62708-307-2
... Abstract Magnesium, by volume, is two-thirds the weight of aluminum and one-quarter the weight of steel. It also has good damping capacity, giving it an edge over other metals in high-vibration environments. This chapter discusses the basic metallurgy, alloy designations, compositions, and...
Abstract
Magnesium, by volume, is two-thirds the weight of aluminum and one-quarter the weight of steel. It also has good damping capacity, giving it an edge over other metals in high-vibration environments. This chapter discusses the basic metallurgy, alloy designations, compositions, and mechanical properties of cast and wrought magnesium alloys. It also describes the processes used to produce magnesium parts, the causes and effects of corrosion, and the use of protective coatings and treatments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310155
EISBN: 978-1-62708-286-0
... methods. Traditional powder metallurgy production methods are used to make small near-net shape components, avoiding most of the costly machining steps. More impressively, powder technology is also used to produce massive components. For example, very high carbon/vanadium stainless tool steel components...
Abstract
This article discusses the steps in the primary processing of stainless steels: melting, refining, remelting, casting, and hot rolling. It provides information of the major categories of defects in hot rolled stainless steels, namely hot mill defects, inclusion-related defects, and hot ductility-related defects.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2008
DOI: 10.31399/asm.tb.ssde.t52310233
EISBN: 978-1-62708-286-0
... Abstract The case for using stainless steel in appliances of all types, whether they are commercial or residential, relates to it being able to provide the best value over the intended service life. This chapter describes some of the qualities in any material considered for food contact, namely...
Abstract
The case for using stainless steel in appliances of all types, whether they are commercial or residential, relates to it being able to provide the best value over the intended service life. This chapter describes some of the qualities in any material considered for food contact, namely chemical neutrality, biological neutrality, and cleanliness. A vast majority of stainless steel applications in commercial and residential equipment are also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550193
EISBN: 978-1-62708-307-2
... (25 by 25 in.) and 559 by 355 mm (22 by 14 in.), at thicknesses of 1.4 and 1.88 mm (0.055 and 0.074 in.), respectively, from cross-rolled beryllium powder sheet. The flat beryllium sheet was heated to approximately 427 °C (800 °F), placed on a stainless steel sheet somewhat longer than the beryllium...
Abstract
Beryllium is an extraordinary metal with an unusual combination of physical and mechanical properties. It has low density, high stiffness, and excellent dimensional stability. It is also transparent to x-rays and can be machined to extremely close tolerances. This chapter discusses the properties, compositions, and processing characteristics of beryllium and its alloys. It provides information on powder production and consolidation, commercial designations and grades, wrought products, and forming processes. It also discusses the issue of corrosion, the use of protective treatments and coatings, and health and safety concerns.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2001
DOI: 10.31399/asm.tb.aub.t61170614
EISBN: 978-1-62708-297-6
... allowing quenching to obtain ductility for cold rolling of strip products. Phosphorus may be added to pure irons and silicon irons to enhance stampability and machinability and to aid the sintering of powdered irons. Chromium is added to iron to produce ferritic stainless steels with suitable soft...
Abstract
This article discusses the compositions, structures, and properties of the most common grades of soft magnetic metals and permanent magnet alloys. It explains how alloying additions and impurities affect the magnetic properties of these materials, which include commercially pure and phosphorus irons, low-carbon and silicon steels, ferritic stainless steels, and nickel-iron and iron-cobalt alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310285
EISBN: 978-1-62708-326-3
...-speed steels: T- and M-type (including powder metallurgy) Special steels for (plastic) molding Non-corrosion-resistant mold steels: P-(including new variations) as well as H-, 6F- and L6-type Corrosion-resistant steels: 420-type (including new variations) Table 1 AISI-SAE...
Abstract
The possible classification for tool steels is their division into four groups according to their final application: hot-worked, cold-worked, plastic mold, and high-speed tool steels. This chapter mainly follows such division by application, but the grade nomenclatures used here are primarily from AISI. It presents the classification of tool steels and discusses the principles and processes of tool steel heat treating, namely normalizing, annealing, hardening, and tempering. Various factors associated with distortion in several tool steels are also covered. The chapter discusses the composition, classification, and properties of unalloyed and low-alloy cold-worked tool steels; medium and high-alloy cold-worked tool steels; and 18% nickel maraging steels.