Skip Nav Destination
Close Modal
Search Results for
powder blending
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 158 Search Results for
powder blending
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Image
Published: 01 June 2016
Fig. 2.15 Effect of geometrical conditions in cold spraying a powder blend of 50 vol% copper and 50 vol% tungsten particles (a, b) with coarse hard-phase particles in sizes of 22 to 45 μm and (c, d) fine hard particles in sizes of 5 to 15 μm. Cold spraying was performed with nitrogen
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740373
EISBN: 978-1-62708-308-9
... Abstract This chapter covers the basic steps of the powder metallurgy process, including powder manufacture, powder blending, compacting, and sintering. It identifies important powder characteristics such as particle size, size distribution, particle shape, and purity. It compares and contrasts...
Abstract
This chapter covers the basic steps of the powder metallurgy process, including powder manufacture, powder blending, compacting, and sintering. It identifies important powder characteristics such as particle size, size distribution, particle shape, and purity. It compares and contrasts mechanical, chemical, electrochemical, and atomizing processes used in powder production, discusses powder treatments, and describes consolidation techniques along with secondary operations used to obtain special properties or improve dimensional precision. It also discusses common defects such as ejection cracks, density variations, and microlaminations.
Image
Published: 01 June 2016
Fig. 2.13 SEM micrograph of a titanium-molybdenum composite cold sprayed with nitrogen at a process gas pressure of 4.2 MPa (610 psi) and a process gas temperature of 930 °C (1700 °F). The volume content of 50% Mo in the powder blend was reduced to 41% in the final coating at an overall
More
Image
Published: 01 December 2000
Fig. 7.3 Impeller made from Ti-6Al-4V blended elemental powder. Courtesy of Dynamet Technology, Inc.
More
Image
Published: 01 December 2000
Fig. 7.6 Typical tensile properties of blended elemental titanium alloy powder compacts. Shaded areas represent observed ranges.
More
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2016
DOI: 10.31399/asm.tb.hpcspa.t54460017
EISBN: 978-1-62708-285-3
... and impose particular challenges for successful coating production. In principle, the powder feedstock may consist of a mixed powder blend or even be discharged from two separate powder feeders simultaneously, providing an opportunity to produce graded coatings. In another approach, two different materials...
Abstract
This chapter reviews the current understanding of high-pressure cold spraying for different materials, covering widely accepted general mechanisms for particle deposition and the processes and parameters involved. It begins by reviewing the mechanisms of bonding. An overview of the optimization of the critical process parameters for improving coating qualities is then provided. This is followed by a separate section dealing with bonding between different materials and addressing influences on adhesion to the substrate as well as the cohesion between dissimilar coating constituents. The knowledge of the basic science and mechanisms finally allows for discussion on the requirements for suitable cold spray equipment and of the parameter sets needed for successful coating deposition.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.tpmpa.t54480161
EISBN: 978-1-62708-318-8
... are produced from powders and how the different methods compare with each other and with conventional production techniques. The methods covered include powder injection molding, spray forming, additive manufacturing, blended elemental processing, and rapid solidification. fatigue limit fracture...
Abstract
Casting is the most economical processing route for producing titanium parts, and unlike most metals, the properties of cast titanium are on par with those of wrought. This chapter covers titanium melting and casting practices -- including vacuum arc remelting, consumable electrode arc melting, electron beam hearth melting, rammed graphite mold casting, sand casting, investment casting, hot isostatic pressing, weld repair, and heat treatment -- along with related equipment, process challenges, and achievable properties and microstructures. It also explains how titanium parts are produced from powders and how the different methods compare with each other and with conventional production techniques. The methods covered include powder injection molding, spray forming, additive manufacturing, blended elemental processing, and rapid solidification.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130395
EISBN: 978-1-62708-284-6
... are generally annealed in a reducing atmosphere. Special high-compressibility powders are produced by double-annealing operations. Blending Alloying elements are typically mixed with the iron powder by blending in a double-cone blender. Elemental addition of alloying elements, that is, graphite, copper...
Abstract
This chapter reviews failure aspects of structural ferrous powder metallurgy (PM) parts, which form the bulk of the PM industry. The focus is on conventional PM technology of parts in the density range of 6 to 7.2 g/cc. The chapter briefly introduces the processing steps that are essential to understanding failure analysis of PM parts. This is followed by a section on case hardening of PM parts. The methods used for analyzing the failures are then discussed. Some case studies are given that illustrate different failures and the methods of prevention of these failures.
Image
Published: 01 December 2000
Fig. 7.7 Room-temperature smooth axial fatigue behavior of blended elemental and prealloyed powder metallurgy powder compacts of Ti-6Al-4V compared with wrought annealed material
More
Image
Published: 01 December 2000
Fig. 12.42 Comparison of Ti-6Al-4V alloy room-temperature fatigue life scatter bands for several powder compact types (prealloyed, PA, and blended elemental, BE, powders) with wrought mill-annealed material (IM, ingot metallurgy)
More
Image
in Melting, Casting, and Powder Metallurgy[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Fig. 8.20 Scanning electron micrograph of porous titanium sponge fines used as starting stock in blended-elemental powder metallurgy
More
Image
in Melting, Casting, and Powder Metallurgy[1]
> Titanium: Physical Metallurgy, Processing, and Applications
Published: 01 January 2015
Fig. 8.23 Comparison of fatigue behavior of annealed blended-elemental and prealloyed Ti-6Al-4V powder metal compacts with ingot metallurgy material
More
Image
Published: 01 December 2000
Fig. 12.41 Fracture toughness versus density for pressed and sintered compacts from blended elemental powders of Ti-6Al-4V alloy. Note that the toughness values are not valid K Ic and thus are labeled as K Q .
More
Image
Published: 01 December 2000
Fig. 7.1 Aerospace and automotive Ti-6Al-4V parts produced using blended elemental powder. (a) Impeller. (b) F-18 pivot fitting. (c) Missile housing. (d) Lens housing. (e) Automotive cylinder
More
Image
Published: 01 June 2016
Fig. 2.14 (a) Individual deposition efficiencies (DE) and (b) hard-phase contents in the powders and the coatings for cold spraying copper-tungsten blends of similar particle-size cuts. Cold spraying was performed with nitrogen at a process gas pressure of 4 MPa (580 psi) and a process gas
More
Image
Published: 01 December 2000
Fig. 12.44 Effect of density on room-temperature fatigue strength of cold isostatically pressed (CIP) and sintered Ti-6Al-4V compacts made from blended elemental powders. Note that the higher densities are only possible in the low-chloride material with broken-up structure (BUS). TCP
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120047
EISBN: 978-1-62708-269-3
... be highly pyrophoric. Purity is important for all powder products and is critical for the consolidation of blended elemental fines where the void content must be minimal—the residual chloride content is a major factor in the amount of residual porosity of the final product. Contaminants are detrimental...
Abstract
This chapter discusses the advantages and disadvantages of producing titanium parts using powder metallurgy (PM) techniques. It compares the typical properties of wrought, cast, and PM titanium alloy products, addresses various manufacturing challenges, and describes several consolidation and shaping processes along with associated property data.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870537
EISBN: 978-1-62708-314-0
... less than 25 percent, and are relatively low in cost. Normal volume percentages are 15 to 25 percent, with SiC p particle diameters of 0.19 to 1.2 mil (3 to 30 μm). Discontinuously reinforced aluminum is usually manufactured by melt incorporation during casting or by powder blending and consolidation...
Abstract
This chapter discusses the advantages and disadvantages of metal matrix composites and the methods used to produce them. It begins with a review of the composition and properties of aluminum matrix composites. It then describes discontinuous composite processing methods, including stir and slurry casting, liquid metal infiltration, spray deposition, powder metallurgy, extrusion, hot rolling, and forging. The chapter also provides information on continuous-fiber aluminum and titanium composites as well as particle-reinforced titanium and fiber metal (glass aluminum) laminates.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280117
EISBN: 978-1-62708-267-9
.... Then powder lots are blended. The necessity for blending is multifold. First, some powder lots or remaining portions thereof may be of insufficient weight to produce the desired component. Second, by averaging the powder over large weights, the risk of an individual lot being excluded because it fails to meet...
Abstract
Gas turbine disks made from nickel-base superalloys are often produced using powder metallurgy (P/M) techniques because the alloy compositions normally used are difficult or impractical to forge by conventional methods. This chapter discusses the P/M process and its application to superalloys. It describes the gas, vacuum, and centrifugal atomization processes used to make commercial superalloy powders. It explains how the powders are consolidated into preforms or billets using hot isostatic pressing, extrusion, or a combination of the two. It also provides information on spray forming and consolidation by atmospheric pressure, and includes a section on powder-based disk components, where it discusses the general advantages of P/M as well as the effects of inclusions, carbon contamination, and the formation of oxide and carbide films due to prior particle boundary conditions. The chapter concludes with a detailed discussion on mechanically alloyed superalloy compositions, the product forms into which they are made, and some of the applications where they are used.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900167
EISBN: 978-1-62708-350-8
...; reduce specimen size. Edge shrinkage Excessive shrinkage of plastic away from sample Decrease molding temperature; cool mold slightly prior to ejection. Circumferential splits Absorbed moisture; entrapped gases during molding Preheat powder or premold; momentarily release pressure during...
Abstract
Examining and evaluating the nitrided case is generally accomplished by hardness testing and microscopic examination. This chapter discusses both characterization methods, as well as sample preparation. The chapter also discusses the processes involved in the etching of the sample after microhardness testing and provides practices that contribute to the safe preparation of specimens. Examples of nitrided case microstructures, using optical light microscopy, are also presented.