Skip Nav Destination
Close Modal
Search Results for
post weld heat treatment
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 131 Search Results for
post weld heat treatment
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 August 1999
Fig. 11.12 Effects of heat treatment after explosive welding steel to steel (0.15% C). Same weld as illustrated in Fig. 11.11 except for post-welding heat treatment. (a) and (b) Heated at 650 °C for 30 min. (a) 1% nital. 100×. (b) 1% nital. 1000×. (c) and (d) Heated at 925 °C
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200295
EISBN: 978-1-62708-354-6
... welding is not recommended. In fact, low interpass temperature maximums (200-400 °F) are often used. The requirements for post-weld heat treatment are subjects of much debate, many opinions, and little data. This is due to the complexity of corrosion behavior, limited testing of cast alloys...
Abstract
Nickel-base castings are produced from a group of alloys with compositions that are typically greater than 50% Ni and less than 10% iron. This chapter presents the casting compositions of nickel-base alloys. It then provides an overview of heat treatment, mechanical properties, and applications of nickel-base castings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930311
EISBN: 978-1-62708-359-1
... treatment to impart sufficient ductility to the fusion zone ( Ref 29 ). A stress-relieving and stabilizing treatment at about 600 °C (1110 °F) is commonly used for Ti-6Al–4V weldments ( Ref 30 ). For the majority of welded aerospace structural components, a maximum post-weld heat treatment temperature...
Abstract
This article discusses the fusion welding processes that are most widely used for joining titanium, namely, gas-tungsten arc welding, gas-metal arc welding, plasma arc welding, laser-beam welding, and electron-beam welding. It describes several important and interrelated aspects of welding phenomena that contribute to the overall understanding of titanium alloy welding metallurgy. These factors include alloy types, weldability, melting and solidification effects on weld microstructure, postweld heat treatment effects, structure/mechanical property/fracture relationships, and welding process application.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200158
EISBN: 978-1-62708-354-6
... of up to 50% compared to an all weld design. The cast nodes are produced in steel grades which do not require post-weld heat treatment and have excellent mechanical properties. Fig. 11-2 Complex trunnion node weighing approximately 100 tons On a smaller scale “off the road” vehicles...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120039
EISBN: 978-1-62708-269-3
... annealed after welding. Weld deposits can have higher strength than the parent metal owing to microstructural differences resulting from the fast cooling rate of the weld process and some oxygen pickup. These differences can be eliminated by a high-temperature post-weld heat treatment, but stress...
Abstract
Titanium castings are used in a wide range of aerospace, chemical process, marine, biomedical, and automotive applications. This chapter provides an overview of titanium casting and associated processes and how they compare with other manufacturing methods. It also discusses the role heat treating and its effect on the tensile properties of different titanium alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270080
EISBN: 978-1-62708-301-0
... and Recommendations The tie-rod failed in a brittle manner from a poor-quality weld interface. It is preferable to use a cold-drawn low-carbon steel for the tie-rod to facilitate better welding. If, however, 0.5% carbon steel has to be used, adequate preheating and post-heat-treatment procedures must...
Abstract
A tie rod on a 70-ton aircraft towing tractor failed during a test run, fracturing near a welded bracket that connects to a hydraulic jack. This chapter discusses the failure and the investigation that followed. It presents a close-up view of the fracture surface showing what appears to be a brittle fracture that initiated from a zone of poor-quality weld. It also provides photographic evidence of a weld crack in the heat-affected zone and includes a drawing of a modified weld design that passed subsequent testing.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.9781627083591
EISBN: 978-1-62708-359-1
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930365
EISBN: 978-1-62708-359-1
... of similar composition but higher alloy content. Weld cracking is avoided by ensuring that the weld contains 5–10% ferrite. Weld decay (chromium carbide precipitation) leads to loss of corrosion resistance. Minimized by C <0.03% or add Nb. Ti (stabilized steel) and pay regard to post-weld heat treatment...
Abstract
This appendix provides reference tables listing weldability of cast irons, steels, and nonferrous metals. A process selection table for arc welding carbon steels is included, and recommended preheat and interpass temperature tables are also presented. This appendix includes information on qualification codes and standards.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200197
EISBN: 978-1-62708-354-6
... by a tempering heat treatment in which the casting is heated to within the range of 400 °F to 1350 °F as determined by the type of alloys present and the desired final mechanical properties and cooled to room temperature in air or quenchant. The heat treatment given to post-weld stress relieve a casting...
Abstract
After pouring, castings are allowed to solidify and cool. They are later removed from the molds in the shakeout operation. A series of activities then follow, which are generally referred to as finishing and heat treatment. These activities can be broadly categorized as shakeout, abrasive blast cleaning, removal of risers, ingates, and discontinuities, rough inspection, removal of discontinuities, finishing welding, heat treatment, and final visual, dimensional, and NDT inspection. This chapter provides a detailed discussion on these activities.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930189
EISBN: 978-1-62708-359-1
... be important in the initiation and propagation of environmentally assisted cracking. The use of small weld deposits reduces the stress and thus reduces the susceptibility of environmentally enhanced cracking. It is known that postweld heat treatment can reduce stress-corrosion cracking by redistributing...
Abstract
This article describes some of the general characteristics associated with the corrosion of weldments. The role of macrocompositional and microcompositional variations, a feature common to weldments, is emphasized in this article to bring out differences that need to be realized in comparing corrosion of weldments to that of wrought materials. The article discusses the most important methods available to minimize corrosion in weldments.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2008
DOI: 10.31399/asm.tb.fahtsc.t51130001
EISBN: 978-1-62708-284-6
... the performance of the design process of a component. A heat-transfer model, coupling with a phase transformation model, a thermomechanical model, and a thermochemical model, is also considered. The chapter further provides information on the failure aspects of and heat treatment procedures applied to welded...
Abstract
A systematic procedure for minimizing risks involved in heat treated steel components requires a combination of metallurgical failure analysis and fitness for service with respect to safety and reliability based on risk analysis. This chapter begins with an overview of heat treat processing of steels. This is followed by sections on various aspects of heat treatment design and heat treating practices for minimizing distortion. Influence of design, steel grade, and condition is then illustrated in the examples of failures due to heat treatment. A procedure is analyzed to improve the performance of the design process of a component. A heat-transfer model, coupling with a phase transformation model, a thermomechanical model, and a thermochemical model, is also considered. The chapter further provides information on the failure aspects of and heat treatment procedures applied to welded components. It ends with a section on risk-based approach applicable to heat treated steel components.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ahsssta.t53700177
EISBN: 978-1-62708-279-2
... in areas along the grain boundaries. This may lead to loss of toughness and intergranular corrosion of the steel. The sensitization effect can be minimized by reducing the carbon content of the steel. Post-heating after welding is needed to redissolve the precipitates and to relieve the stress caused...
Abstract
This chapter describes the nature of the problems arising from using advanced high-strength steels (AHSS) and discusses potential remedies to minimize the adverse effects that may limit the adoption of AHSS in the automotive industry. The discussion provides information on press energy, springback, residual stress, die wear, hot forming, downgaging limits, welding, binders, draw beads, and tool material wear.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200369
EISBN: 978-1-62708-354-6
... has been in service. Most of the cast grades are readily weldable, however, the ease with which they can be welded depends on their chemical composition, heat treatment, and to some degree, the section thickness involved. Base metal preparation and details of welding, defect removal, and some...
Abstract
This chapter covers the basics of weldability of cast steels such as carbon and low alloy steels, corrosion-resistant high alloy steels, nickel-base alloys, heat-resistant high alloy steels, and wear-resistant high austenitic manganese steels. It provides an overview of weld overlay and hard facing; cast-weld construction; and plasma arc cutting and plasma arc welding. The chapter discusses different types of welding processes. These include shielded metal-arc welding, air carbon arc cutting process, gas tungsten-arc welding, gas metal-arc welding process, flux-cored arc welding, submerged arc welding, and electroslag and electro-gas welding.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930217
EISBN: 978-1-62708-359-1
... and postweld heat treatment (PWHT). In addition, any metallurgical and/or weldability problems associated with the HAZ characteristics will be more difficult to handle than those associated with the weld metal. Welding problems that occur in the weld metal can often be overcome by changing the welding...
Abstract
This article reviews the fundamental and specific factors that control the properties of steel weldments in both the weld metal and heat-affected zone (HAZ). The influence of welding processes, welding consumables, and welding parameters on the weldment properties is emphasized. The service properties of weldments in corrosive environments are considered and subjected to cyclic loading. The article summarizes the effects of major alloying elements in carbon and low-alloy steels on HAZ microstructure and toughness. It discusses the processes involved in controlling toughness in the HAZ and the selection of the proper filler metal. The article provides a comparison between single-pass and multipass welding and describes the effect of welding procedures on weldment properties and the effects of residual stresses on the service behavior of welded structures. It also describes the fatigue strength and fracture toughness of welded structures. The article reviews various types of corrosion of weldments.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900201
EISBN: 978-1-62708-350-8
..., salt bath nitrocarburizing. Source: Ref 5 Fig. 8 Corrosion resistance of various surface treatments on steel based on field immersion tests. Test conditions: Full immersion for 24 h in 3% sodium chloride plus 3 g/L hydrogen peroxide. Salt bath nitrocarburized with no post-treatment. Source...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 1997
DOI: 10.31399/asm.tb.wip.t65930249
EISBN: 978-1-62708-359-1
... that maximum transformation to martensite occurs. If this has not happened, then subsequent post-weld heat treatment (PWHT) immediately after welding may be ineffective, for two reasons. First, the partially austenitic structure will retain hydrogen, which can lead to hydrogen cracking problems upon eventual...
Abstract
Stainless steel base metals and the welding filler metals used with them are chosen on the basis of suitable corrosion resistance for the intended application. This article describes several constitution diagrams that that have been developed to predict microstructures and properties. This is followed by discussions of weldability, cracking, and the engineering properties of stainless steel welds, namely martensitic stainless steels, ferritic stainless steel welds, austenitic stainless steels, and duplex stainless steels.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820001
EISBN: 978-1-62708-339-3
... and residual stress. These residual stresses can be important in the initiation and propagation of environmentally assisted cracking. The use of small weld deposits reduces the stress and thus reduces the susceptibility of environmentally enhanced cracking. It is known that postweld heat treatment can...
Abstract
Corrosion failures of welds can occur even when the proper base metal and filler metal have been selected, industry codes and standards have been followed, and welds have been deposited that possess full weld penetration and have proper shape and contour. This chapter describes some of the general characteristics associated with the corrosion of weldments. The role of macro- and microcompositional variations, a feature common to weldments, is emphasized in this chapter to bring out differences that need to be realized in comparing the corrosion of weldments to that of wrought materials. The discussion covers the factors influencing corrosion of weldments, microstructural features of weld microstructures, various forms of weld corrosion, and welding practice to minimize corrosion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1995
DOI: 10.31399/asm.tb.sch6.t68200274
EISBN: 978-1-62708-354-6
... post-weld heat treatment to restore corrosion resistance is impractical or impossible. In the case of stress corrosion attack, the presence of ferrite pools in the austenite matrix is thought to block or make more difficult the propagation of cracks ( 7 ). In the case of intergranular corrosion...
Abstract
This chapter describes the definitions, designation, chemical composition, room-temperature properties, elevated-temperature properties, and corrosion resistance of cast high alloy steels and stainless steels. In addition, the corrosion resistance of cast corrosion-resistant alloys is also covered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060429
EISBN: 978-1-62708-261-7
... treatment). A change in the proper- ping, hot spraying, or diffusion. ties of certain metals and alloys that occurs at amorphous. Not having a crystal structure; ambient or moderately elevated temperatures noncrystalline. after hot working or a heat treatment (quench angstrom. A unit of linear measure equal...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.ttg2.t61120055
EISBN: 978-1-62708-269-3
... resistant to the effects of corrosion and thermal and mechanical fatigue. It describes accepted practices for stress relieving, aging, annealing, and post-treatment processing along with associated challenges and concerns. aging annealing stress relieving titanium alloys Why Heat Treat...
Abstract
This chapter discusses the effect of heat treating on titanium alloys and the influence of time and temperature on critical properties and behaviors. It explains how heat treatments are used to make titanium stronger, tougher, more ductile, and easier to machine as well as more resistant to the effects of corrosion and thermal and mechanical fatigue. It describes accepted practices for stress relieving, aging, annealing, and post-treatment processing along with associated challenges and concerns.
1