Skip Nav Destination
Close Modal
Search Results for
porous bronze filters
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 26 Search Results for
porous bronze filters
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290251
EISBN: 978-1-62708-319-5
... in process involving plastics, emulsions, ceramics, and porous structures and foams. Improvements in the design processes have led to the development of functional structures, controlled porosity, and bioinspired structures. binder jetting bound-metal deposition fused-filament fabrication plastics...
Abstract
This chapter is intended to identify materials, processes, and designs that will lead to great advances in powder-binder forming technologies. It discusses some of the structures obtained through these advances in powder-binder technologies such as binder jetting and extrusion-based additive manufacturing, including bound-metal deposition and fused-filament fabrication: oxidation-resistant high-temperature alloys, anisotropic structures, submicrometer-scale structures, surface hard materials, and artist metallic clays. Some of the advances discussed include the developments in process involving plastics, emulsions, ceramics, and porous structures and foams. Improvements in the design processes have led to the development of functional structures, controlled porosity, and bioinspired structures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720393
EISBN: 978-1-62708-305-8
... hardness scales Material Sintered hardness scale Heat treated hardness scale Iron HRH, HRB HRB, HRC Iron-carbon HRB HRB, HRC Iron-nickel-carbon HRB HRC Prealloyed steel HRB HRC Bronze HRH … Brass HRH … Scource: Ref 1 Microhardness of porous materials can...
Abstract
Fabricated powder metallurgy (P/M) parts are evaluated and tested at several stages during manufacturing for part acceptance and process control. The various types of tests included are dimensional evaluation, density measurements, hardness testing, mechanical testing, and nondestructive testing. This chapter is a detailed account of these testing methods. It describes the four most common types of defects in P/M parts, namely ejection cracks, density variations, microlaminations, and poor sintering. The chapter discusses the capabilities and limitations of various nondestructive evaluation methods to flaw detection in P/M parts. The nondestructive evaluation methods covered are mechanical proof testing, metallography, liquid penetrant crack detection, filtered particle crack detection, magnetic particle crack inspection, direct current resistivity testing, x-ray radiography, computed tomography, gamma-ray density determination, and ultrasonic techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290111
EISBN: 978-1-62708-319-5
... molding 0.1–200 High, 50–125 features 0.1–5 0.004–0.2 High production rate, hard tooling Slip casting 10–1000 High 1–3 0.04–0.12 Slow, low precision, porous mold Slurry casting 50–40,000 High 10–50 0.4–2.0 Heated slurry cast into mold Tape casting 0.1–100 Simple, flat sheet...
Abstract
The conversion of feedstock into a shape involves the application of heat and pressure, and possibly solvents. This chapter discusses the operating principle, advantages, limitations, and applications of such shaping processes, namely additive manufacturing, cold isostatic pressing, die compaction, extrusion, injection molding, slip casting, slurry processes, and tape casting. Information on equipment setup, requirements, and the various factors influencing these processes are described. In addition, the chapter provides information on novel approaches and processing costs applicable to these shaping processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350011
EISBN: 978-1-62708-315-7
..., or a substance adsorbed on or absorbed in another substance. All structural metals corrode to some extent in natural environments (e.g., the atmosphere, soil, or waters). Bronze, brass, most stainless steels, zinc, and pure aluminum corrode so slowly in service conditions that long service life is expected...
Abstract
This chapter discusses the basic principles of corrosion, explaining how and why it occurs and how it is categorized and dealt with based on the appearance of corrosion damage or the mechanism of attack. It explains where different forms of corrosion are likely to occur and identifies metals likely to be affected. It also discusses the selection and use of protective coatings and the tests that have been developed to measure their effectiveness.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740373
EISBN: 978-1-62708-308-9
... particle boundaries, etc.) is controlled in a manner that guarantees the specified properties. The density of a part is a very fundamental property, and apart from some unique products such as filters and porous self-lubricating bearings where porosity itself is of functional importance, the highest...
Abstract
This chapter covers the basic steps of the powder metallurgy process, including powder manufacture, powder blending, compacting, and sintering. It identifies important powder characteristics such as particle size, size distribution, particle shape, and purity. It compares and contrasts mechanical, chemical, electrochemical, and atomizing processes used in powder production, discusses powder treatments, and describes consolidation techniques along with secondary operations used to obtain special properties or improve dimensional precision. It also discusses common defects such as ejection cracks, density variations, and microlaminations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610501
EISBN: 978-1-62708-303-4
... alloy 280 (Muntz metal, 60%) Copper alloy 675 (manganese bronze A) Copper alloys 464, 465, 466, 467 (naval brass) Nickel 200 (active) Inconel alloy 600 (active) Hastelloy B Chlorimet 2 Copper alloy 270 (yellow brass, 65%) Copper alloys 443, 444, 445 (admiralty brass) Copper...
Abstract
This chapter discusses common forms of corrosion, including uniform corrosion, galvanic corrosion, pitting, crevice corrosion, dealloying corrosion, intergranular corrosion, and exfoliation. It describes the factors that contribute to stress-corrosion cracking, hydrogen embrittlement, and corrosion fatigue and compares and contrasts their effects on mechanical properties, performance, and operating life. It also includes information on high-temperature oxidation and corrosion prevention techniques.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910099
EISBN: 978-1-62708-250-1
... are typical examples of uniform corrosion. In some metals, such as steel, uniform corrosion produces a somewhat rough surface by removing a substantial amount of metal, which either dissolves in the environment or reacts with it to produce a loosely adherent, porous coating of corrosion products...
Abstract
Corrosion problems can be divided into eight categories based on the appearance of the corrosion damage or the mechanism of attack: uniform or general corrosion; pitting corrosion; crevice corrosion, including corrosion under tubercles or deposits, filiform corrosion, and poultice corrosion; galvanic corrosion; erosion-corrosion, including cavitation erosion and fretting corrosion; intergranular corrosion, including sensitization and exfoliation; dealloying; environmentally assisted cracking, including stress-corrosion cracking, corrosion fatigue, and hydrogen damage (including hydrogen embrittlement, hydrogen-induced blistering, high-temperature hydrogen attack, and hydride formation). All these forms are addressed in this chapter in the context of aqueous corrosion. For each form, a general description is provided along with information on the causes and the list of metals that can be affected, with particular emphasis on the recognition and prevention measures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290009
EISBN: 978-1-62708-319-5
..., carburization Elemental, compound Fe, Ni, W, U, Co, Mo, WC, AlN, SiC, TiAl, NiAl, Si 3 N 4 0.1–100 Rounded, sponge, agglomerate Phase change Atomization, vapor condensation Elemental, alloy, compound Stainless steel, bronze, steel, Al, Mg, Ti, Ni, Cu, Fe, TiO 2 0.1–200 Rounded, spherical...
Abstract
This chapter introduces the key powder fabrication attributes to assist in the identification of the right powders for an application. First, it describes the characteristics of engineering powders such as particle size distribution, powder shape and packing density, surface area, powder flow and rheology, and chemical analysis. The chapter then describes the general categories of powder fabrication methods, namely mechanical comminution, electrochemical precipitation, thermochemical reaction, and phase change and atomization. It provides information on the two largest contributors to powder price, namely raw material cost and conversion cost. The applicability of various processes to specific material systems is mentioned throughout this chapter.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.9781627082617
EISBN: 978-1-62708-261-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060085
EISBN: 978-1-62708-261-7
... Tin brasses C40400-C49080 Cu-Zn-Sn-Pb Phosphor bronzes C50100-C52400 Cu-Sn-P Leaded phosphor bronzes C53200-C54800 Cu-Sn-Pb-P Copper-phorphorus and copper-silver-phosphorus alloys C55180-C55284 Cu-P-Ag Aluminum bronzes C60600-C64400 Cu-Al-Ni-Fe-Si-Sn Silicon bronzes C64700...
Abstract
This chapter describes the processes involved in alloy production, including melting, casting, solidification, and fabrication. It discusses the effects of alloying on solidification, the formation of solidification structures, supercooling, nucleation, and grain growth. It describes the design and operation of melting furnaces as well as melting practices and the role of fluxing. It also discusses casting methods, nonferrous casting alloys, and atomization processes used to make metal powders.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2000
DOI: 10.31399/asm.tb.cub.t66910237
EISBN: 978-1-62708-250-1
..., and their corrosion rate decreases to much lower values than those for carbon steel. This alternate wetting and drying cycle produces a protective oxide film on weathering steel, but it produces a more porous nonprotective oxide film on carbon steel. Repeated cycles of this type ultimately result in complete coverage...
Abstract
All materials are susceptible to corrosion or some form of environmental degradation. Although no single material is suitable for all applications, usually there are a variety of materials that will perform satisfactorily in a given environment. The intent of this chapter is to review the corrosion behavior of the major classes of metals and alloys as well as some nonmetallic materials, describe typical corrosion applications, and present some unique weaknesses of various types of materials. It also aims to point out some unique material characteristics that may be important in material selection, and discuss, where appropriate, the characteristic forms of corrosion that attack specific materials. The materials addressed in this chapter include carbon steels, weathering steels, and alloy steels; nickel, copper, aluminum, titanium, lead, magnesium, tin, zirconium, tantalum, niobium, and cobalt and their alloys; polymers; and other nonmetallic materials, including rubber, carbon and graphite, and woods.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.ex2.t69980323
EISBN: 978-1-62708-342-3
... for the cooling and filter circuits, the pilot pressure pumps, and, in the case of separate high pressure pumps, the filter, the cooler, and the valves ( Fig. 6.20 , 6.21 ). Fig. 6.20 Oil hydraulic drive system with controls, tank, filters, coolers, and valves Fig. 6.21 Control desk...
Abstract
The machinery and equipment required for rod and tube extrusion is determined by the specific extrusion process. This chapter provides a detailed description of the design requirements and principles of machinery and equipment for direct and indirect hot extrusion. It then covers the presses and auxiliary equipment for tube extrusion, induction furnaces for billet processing, handling systems for copper and aluminum alloy products, extrusion cooling systems, and age-hardening ovens. Next, the chapter describes the principles and applications of equipment for the production of aluminum and copper billets. Then, it focuses on process control in both direct and indirect hot extrusion of aluminum alloys without lubrication. The chapter describes the technology of electrical and electronic controls in the extrusion process. It ends with a discussion on the factors that influence the productivity and quality of the products in the extrusion process and methods for process optimization.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 April 2013
DOI: 10.31399/asm.tb.imub.t53720183
EISBN: 978-1-62708-305-8
... Copper, annealed 17.2 100 Gold 24.4 70 Aluminum 28.2 61 Aluminum alloys 6061-T6 41 42 7075-T6 53 32 2024-T4 52 30 Magnesium 46 37 70-30 brass 62 28 Phosphor bronzes 160 11 Monel 482 3.6 Zirconium 500 3.4 Zircaloy-2 720 2.4 Titanium 548...
Abstract
Liquid penetrant, magnetic particle, and eddy current inspection are used to detect surface flaws. This chapter is a detailed account of the physical principles, process description, equipment requirements, selection criteria, advantages, limitations, and applications of these surface flaw detection techniques.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.9781627084284
EISBN: 978-1-62708-428-4
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.9781627082839
EISBN: 978-1-62708-283-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060117
EISBN: 978-1-62708-261-7
... for powder metal alloys and special ceramics Sintered material Sintering temperatures, °C Aluminum alloys 590–620 Bronze 740–780 Brass, 890-910 Iron, carbon steels, low-alloyed steels (Cu, Ni) 1120–1150 Low-alloyed steels (Cu, Ni, Mo; Distaloy) 1120–1200 High-alloyed ferritic...
Abstract
This chapter describes the processes involved in the fabrication of wrought and cast metal products. It discusses deformation processes including bending and forming, material removal processes such as milling, cutting, and grinding, and joining methods including welding, soldering, and brazing. It also discusses powder consolidation, rolling, drawing and extrusion, and common forging methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740047
EISBN: 978-1-62708-308-9
... turbulence in gating systems in medium-size and large castings, because the velocity the metal reaches on falling down the sprue is usually so great that turbulence is unavoidable. Ceramic filters slow the velocity of the metal in the runner, which fills the sprue with metal. Good gating practice recommends...
Abstract
This chapter covers the practices and procedures used for shape casting metals and alloys. It begins with a review of the factors that influence solidification and contribute to the formation of casting defects. It then describes basic melting methods, including induction, cupola, crucible, and vacuum melting, and common casting techniques such as sand casting, plaster and shell casting, evaporative pattern casting, investment casting, permanent mold casting, cold and hot chamber die casting, squeeze casting, semisolid metal processing, and centrifugal casting.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.9781627082600
EISBN: 978-1-62708-260-0
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1984
DOI: 10.31399/asm.tb.mpp.t67850060
EISBN: 978-1-62708-260-0
... are available with different degrees of bonding; i.e., the amount of porosity is varied to control wheel hardness. A “soft” wheel has a relatively porous rubber bond which permits the wheel to be consumed at a fast rate. A soft wheel is desirable for cutting hard materials, since breakdown exposes cutting...
Abstract
This chapter explains how to prepare metallographic samples for light microscopy and how to anticipate and avoid related problems. It describes standard practices and procedures for sectioning, mounting, grinding, and polishing and identifies common defects along with their causes and cures. It also provides recommendations for handling specific materials and addresses safety concerns.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.9781627082532
EISBN: 978-1-62708-253-2