Skip Nav Destination
Close Modal
Search Results for
polymers
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 817 Search Results for
polymers
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730099
EISBN: 978-1-62708-283-9
... Abstract This chapter discusses the structural classifications, molecular configuration, degradation, properties, and uses of polymers. It describes thermoplastic and thermosetting polymers, degree of polymerization, branching, cross-linking, and copolymers. It also discusses glass transition...
Abstract
This chapter discusses the structural classifications, molecular configuration, degradation, properties, and uses of polymers. It describes thermoplastic and thermosetting polymers, degree of polymerization, branching, cross-linking, and copolymers. It also discusses glass transition temperatures, additives, and the effect of stretching on thermoplastics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610327
EISBN: 978-1-62708-303-4
... Abstract This chapter covers the fatigue and fracture behaviors of ceramics and polymers. It discusses the benefits of transformation toughening, the use of ceramic-matrix composites, fracture mechanisms, and the relationship between fatigue and subcritical crack growth. In regard to polymers...
Abstract
This chapter covers the fatigue and fracture behaviors of ceramics and polymers. It discusses the benefits of transformation toughening, the use of ceramic-matrix composites, fracture mechanisms, and the relationship between fatigue and subcritical crack growth. In regard to polymers, it covers general characteristics, viscoelastic properties, and static strength. It also discusses fatigue life, impact strength, fracture toughness, and stress-rupture behaviors as well as environmental effects such as plasticization, solvation, swelling, stress cracking, degradation, and surface embrittlement.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.fdsm.t69870325
EISBN: 978-1-62708-344-7
... Abstract This chapter discusses the effect of fatigue on polymers, ceramics, composites, and bone. It begins with a general comparison of polymers and metals, noting important differences in microstructure and cyclic loading response. It then presents the results of several studies that shed...
Abstract
This chapter discusses the effect of fatigue on polymers, ceramics, composites, and bone. It begins with a general comparison of polymers and metals, noting important differences in microstructure and cyclic loading response. It then presents the results of several studies that shed light on the fatigue behavior and crack growth mechanisms of common structural polymers and moves on from there to discuss the fatigue behavior of bone and how it compares to stable and cyclically softening metals. It also discusses the fatigue characteristics of engineered and composited ceramics and ceramic fiber-reinforced metal-matrix composites.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780276
EISBN: 978-1-62708-281-5
... Abstract This article briefly reviews abrasive and adhesive wear failure of reinforced polymers and polymer composites, namely particulate-filled polymers, short-fiber-reinforced polymers, polymers with continuous fibers, and mixed reinforcements and fabrics. It includes scanning electron...
Abstract
This article briefly reviews abrasive and adhesive wear failure of reinforced polymers and polymer composites, namely particulate-filled polymers, short-fiber-reinforced polymers, polymers with continuous fibers, and mixed reinforcements and fabrics. It includes scanning electron microscope micrographs of abraded surfaces of composites against 80-grade SiC paper and under 14 N load, and worn surfaces of abraded polyether-imide composites and polyamide 66 unidirectional composites and 66 hybrid composites.
Image
in Mechanical Testing and Properties of Plastics: An Introduction[1]
> Characterization and Failure Analysis of Plastics
Published: 01 December 2003
Fig. 7 Typical creep and creep rupture curves for polymers. (a) Ductile polymers. (b) Brittle polymers
More
Image
in Materials Testing Fundamentals
> Mechanical Properties: Key Topics in Materials Science and Engineering
Published: 15 June 2021
Fig. 8 Pneumatic grips for soft polymers and elastomers
More
Image
Published: 01 December 2008
Fig. 2.22 The entropy elasticity of chain polymers. An spring is also an example of entropy elasticity. However, the entropy increases when air expands, contrary to the case of rubber. (a) The shorter x is, the larger entropy becomes. (b) The elastic coefficients of various matters
More
Image
Published: 30 April 2020
Fig. 3.4 Contrasting cooling curves for amorphous and crystalline polymers. A crystalline polymer has a volume change at the melting temperature, T M , during slow cooling, but an amorphous polymer reaches a brittle condition below the glass transition temperature, T g .
More
Image
Published: 30 April 2020
Fig. 3.6 Summary of the repeating unit structures for common polymers. The degree of polymerization depends on the number of repeating units.
More
Image
Published: 01 October 2011
Fig. 17.2 Thermal conductivity and expansion of metals in relation to polymers, ceramics, and composites. Source: Adapted from Ref 17.7
More
Image
Published: 01 October 2011
Fig. 17.3 Elastic modulus vs. tensile yield strength of metals and polymers. The plot of ceramic strength is their compressive yield strength, because brittle ceramics are not suitable in applications with tensile stress. Elastomer strength is tear strength. The symbol σ f is used
More
Image
Published: 01 August 2013
Fig. 9.1 Structure of several linear polymers. Kevlar is a registered tradename of E.I. du Pont de Nemours and Company. Source: Ref 9.1
More
Image
Published: 01 August 2013
Fig. 14.1 Recycling symbols for polymers. (1) Polyethylene terephthalate, also indicated by PET and called polyester. (2) High-density polyethylene (also PE-HD).(3) Polyvinyl chloride, or PVC. (4) Low-density polyethylene (PE-LD), or LLDPE for very-low-density polyethylene. (5) Polypropylene
More
Image
Published: 01 December 2003
Fig. 1 Temperature dependence of the modulus, E , of polymers. Examples of idealized behaviors exhibited by an amorphous thermoplastic (A), a semicrystalline thermoplastic (B), and a thermoset (C)
More
Image
Published: 01 December 2003
Fig. 13 Relative thermal stability of polymers by thermogravimetric analysis; 10 mg (0.15 gr) at 5 °C/min (9 °F/min) in nitrogen. PVC, polyvinyl chloride; PMMA, polymethylmethacrylate; HPPE, high-pressure polyethylene; PTFE, polytetrafluoroethylene; PI, polyimide
More
Image
Published: 01 December 2003
Fig. 19 Properties of commercial polymers according to thermomechanical analysis. See “ Abbreviations and Symbols ” in this book for definitions of abbreviations. Source: Ref 84
More
Image
Published: 01 December 2003
Fig. 1 Stress amplitude versus cycles-to-failure curves for several polymers tested at a frequency of 30 Hz. PS, polystyrene; EP, epoxy; PET, polyethylene terephthalate; PMMA, polymethyl methacrylate; PPO, polyphenylene oxide; PE, polyethylene; PP, polypropylene; PTFE, polytetrafluoroethylene
More
Image
Published: 01 December 2003
Fig. 9 Fatigue crack propagation behavior of various polymers. PSU, polysulfone; PMMA, polymethyl methacrylate; PC, polycarbonate; PS, polystyrene; PVC, polyvinyl chloride. Source: Ref 48
More
Image
Published: 01 December 2003
Fig. 3 Specific wear rate for a number of polymers, as reported in the literature. The experimental conditions as reported in the literature are given in the table. pv , pressure × velocity Specimen Material Counterface roughness ( R a ), μm Sliding speed ( v ), m/s 1/ S ε
More
1