Skip Nav Destination
Close Modal
Search Results for
polymer processing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 667 Search Results for
polymer processing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870201
EISBN: 978-1-62708-314-0
..., and data plots. composite curing cure monitoring heat transfer mathematical models polymer matrix composites residual stress resin flow resin kinetics resin viscosity void formation PROCESSES FOR NEW COMPOSITE MATERIALS, during the 1960s and 1970s, were based solely on previous...
Abstract
This chapter provides an overview of the tools and techniques, as well as some of the underlying theory, that have proven useful for process modeling and simulation. It begins by presenting the framework of a thermoset cure model that accounts for kinetics, viscosity, heat transfer, flow, voids, and residual stress. It then discusses each variable in detail, explaining how it affects the cure process, how it is measured, and how it can be expressed mathematically in the form of a simple model. The discussions throughout the chapter are supported by numerous images, diagrams, and data plots.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.9781627083195
EISBN: 978-1-62708-319-5
Image
Published: 01 November 2010
Image
Published: 01 November 2010
Image
Published: 01 October 2012
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730139
EISBN: 978-1-62708-283-9
... Abstract This chapter describes the processes, applications, and limitations of forming and shaping various materials. It discusses bulk forming, hot working, cold working, sheet forming, and polymer and powder processing. bulk forming cold working hot working polymer processing...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780028
EISBN: 978-1-62708-281-5
... introduces the basic concepts of polymer structure and properties. This article describes in more detail the importance of chemical composition and morphology to mechanical properties and reviews basic plastic processing techniques. Table 1 and Fig. 1 show the structures and transition temperature...
Abstract
This article describes in more detail the fundamental building-block level, atomic, then expands to a discussion of molecular considerations, intermolecular structures, and finally supermolecular issues. An explanation of important thermal, mechanical, and physical properties of engineering plastics and commodity plastics follows, and the final section briefly outlines the most common plastics manufacturing processes.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780064
EISBN: 978-1-62708-281-5
... improvements and rapid industrial growth. In many ways, SRIM is the natural evolution of two more established molding processes: RIM (described previously), and RTM (described later). Like RIM, SRIM uses the fast polymerization reactions of RIM-type polymers, its intensive resin mixing procedures, and its...
Abstract
This article describes key processing methods and related design, manufacturing, and application considerations for plastic parts and includes a discussion on materials and process selection methodology for plastics. The discussion covers the primary plastic processing methods and how each process influences part design and the properties of the plastic part. It also includes a brief description of functional requirements in process selection; an overview of various process effects and how they affect the functions and properties of the part; and the selection of processes for size, shape, and design detail factors.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780267
EISBN: 978-1-62708-281-5
... several of the wear mechanisms listed previously in any one wear process. For the purpose of this article, details on several of the aforementioned classifications are expanded, using wear data and micrographs from published works. The primary goals are to present the mechanisms of polymer wear...
Abstract
This article provides details on several of the classifications of polymer wear mechanisms, using wear data and micrographs from published works. The primary goals are to present the mechanisms of polymer wear and to quantify wear in terms of wear rate. The discussion begins by providing information on the processes involved in interfacial and cohesive wear. This is followed by sections describing the wear process and applications of elastomers, thermosets, glassy thermoplastics, and semicrystalline thermoplastics. The effects of environmental and lubricant on the wear failures of polymers are then discussed. The article further includes a case study describing the tribological performance of nylon. It ends by presenting some examples of wear failures of plastics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780115
EISBN: 978-1-62708-281-5
... and product development. This article covers the thermal analysis and thermal properties of engineering plastics with respect to chemical composition, chain configuration, and/or conformation of the base polymers; processing of the base polymers with or without additives; and the response to chemical...
Abstract
This article covers the thermal analysis and thermal properties of engineering plastics with respect to chemical composition, chain configuration, and/or conformation of the base polymers. The thermal analysis techniques covered are differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and rheological analysis. The basic thermal properties covered include thermal conductivity, temperature resistance, thermal expansion, specific heat, and the determination of glass-transition temperatures. The article further describes various factors influencing the determination of service temperature of a material. Representative examples of different types of engineering thermoplastics are discussed in terms of structure and thermal properties. The article also discusses the thermal and related properties of thermoset resin systems.
Series: ASM Technical Books
Publisher: ASM International
Published: 30 September 2024
DOI: 10.31399/asm.tb.pmamfa.t59400207
EISBN: 978-1-62708-479-6
... the material viscosity drops to an acceptable level. However, printing temperatures in the MJT system cannot be as high as in hot-melt deposition techniques; this is because polymers become viscous at high temperatures due to the polymerization process. This not only increases the likelihood of nozzle blockade...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780003
EISBN: 978-1-62708-281-5
... polymerization of different monomers. Engineering plastics all have, as their principal constituent, one or more synthetic polymer resins and almost universally contain additives. Additives, which have much smaller molecules than polymers, provide color, flexibility, rigidity, flame resistance, weathering...
Abstract
This introductory article describes the various aspects of chemical structure and composition that are important to an understanding of polymer properties and their eventual effect on the end-use performance of engineering plastics, namely thermoplastics and thermosets. The most important properties of polymers and the most significant influences of structure on those properties are covered. The article also includes some general information on the classification and naming of polymers and plastics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2015
DOI: 10.31399/asm.tb.piht2.t55050173
EISBN: 978-1-62708-311-9
... and burning of the polymer in the tempering process create obnoxious odors. Second, the polymers form adherent coatings that are difficult to remove after tempering. Third, polymers seem to make parts more susceptible to rusting at a later date—even if rust preventives are applied after tempering. Rust...
Abstract
The surface condition of metals can have a significant effect on the outcome of high-temperature processes and vice versa. This chapter discusses the general cleaning and surface treatment needs of work in-process both before and after induction hardening. It identifies contaminants and defects associated with various quenchants and processing atmospheres and provides insights on how they can be removed and, in some cases, prevented. It also recommends the application of a rust preventative shortly after parts have cooled.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540297
EISBN: 978-1-62708-309-6
...., silicates and silicones) are possible. Polymeric materials exhibit strong covalent bonds within each chain. However, individual chains are frequently linked via secondary bonds (e.g., the van der Waals attractive forces). Under applied stresses, polymer chains slide over one another. Failure is the result...
Abstract
Structural and fracture mechanics-based tools for metals are believed to be applicable to nonmetals, as long as they are homogeneous and isotropic. This chapter discusses the essential aspects of the fatigue and fracture behaviors of nonmetallic materials with an emphasis on how they compare with metals. It begins by describing the fracture characteristics of ceramics and glasses along with typical properties and subcritical crack growth mechanisms. It then discusses the properties of engineering plastics and the factors affecting crack formation and growth, fracture toughness, fatigue life, and stress rupture failures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2020
DOI: 10.31399/asm.tb.bpapp.t59290035
EISBN: 978-1-62708-319-5
..., or natural polymers, such as palm oil, carnauba wax, or beeswax. Formulations are customized to the shaping process and may employ the addition of water, solvents, and surfactants. For example, in the case of powder injection molding, the binders are thermoplastic polymeric materials (relying on a mixture...
Abstract
Generally, binders consist of at least three ingredients: a backbone to provide strength (compounds such as polyethylene, polypropylene, ethylene vinyl acetate, and polystyrene); a filler, such as polyacetal and paraffin wax, to occupy space between particles; and additives, such as stearates, stearic acid, or magnesium stearate, as well as phosphates and sulfonates, to adjust viscosity, lubricate tooling, disperse particles, or induce binder wetting of the powder. In the case of binders deposited via ink jet printing, the binder contains solvents to lower the viscosity for easier jetting. The chapter provides a detailed description of these constituents. The requirements of a binder as well as the factors determining the physical and thermal properties of polymers are discussed. Then, two factors associated with solvation of polymers, namely solubility parameter and wetting, are covered. The chapter ends with information on the specification of polymers used in binders.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780146
EISBN: 978-1-62708-281-5
... polymeric materials, UV radiation can be the source of energy that will abstract an atom from the polymer backbone and start the degradation process. It is well known that prolonged outdoor exposure of plastics will initially cause color changes that may be undesirable. Oxidation initiated by UV radiation...
Abstract
This article discusses the chemical susceptibility of a polymeric material. The discussion covers significant absorption and transportation of an environmental reagent by the polymer; the chemical susceptibility of additives; and thermal degradation, thermal oxidative degradation, photo-oxidative degradation, environmental corrosion, and chemical corrosion of polymers. It also includes some of the techniques used to detect changes in structure during polymer exposure to hostile environments. In addition, the article describes the effects of environment on polymer performance, namely plasticization, solvation, swelling, environmental stress cracking, polymer degradation, surface embrittlement, and temperature effects.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780343
EISBN: 978-1-62708-281-5
... diffraction plastics FAILURE OF polymeric materials is a complex process. This article introduces procedures an engineer or materials scientist can use to investigate failures. It also gives a brief survey of polymer systems and key properties that need to be measured during failure analysis. More...
Abstract
This article introduces procedures an engineer or materials scientist can use to investigate failures. It provides a brief survey of polymer systems and key properties that need to be measured during failure analysis. The article begins with an overview of the problem-solving approach pertinent to structure analysis. This is followed by a review of the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy. The article then provides information on the distribution of molecular weight of an engineering plastic. It further discusses the methods used in thermal analysis, namely differential thermal analysis, thermogravimetric analysis, thermal-mechanical analysis, and dynamic mechanical analysis. The following sections provide details on X-ray diffraction for analyzing crystalline phases and on a minimal scheme for polymer analysis and characterization to assist the design engineer. The article ends with a discussion on the thermal-analytical scheme for analyzing the milligram quantities of polymer samples.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870285
EISBN: 978-1-62708-314-0
..., runner, and gate systems at high speed will increase the internal shear and raise the temperature to the point where polymer degradation occurs. Programming different injection speeds and pressures during the injection process may be required to prevent resin degradation. Injection molding compounds...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2010
DOI: 10.31399/asm.tb.scm.t52870573
EISBN: 978-1-62708-314-0
... Abstract This chapter discusses the types of fibers and matrix materials used in ceramic matrix composites and the role of interfacial coatings. It describes the methods used to produce ceramic composites, including powder processing, slurry infiltration and consolidation, polymer infiltration...
Abstract
This chapter discusses the types of fibers and matrix materials used in ceramic matrix composites and the role of interfacial coatings. It describes the methods used to produce ceramic composites, including powder processing, slurry infiltration and consolidation, polymer infiltration and pyrolysis, chemical vapor infiltration, directed metal oxidation, and liquid silicon infiltration.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780295
EISBN: 978-1-62708-281-5
... graphite fibers in amorphous polymers. thermal stress physical aging amorphous polymers high-modulus graphite fibers ENGINEERING PLASTICS, as a general class of materials, are prone to the development of internal stresses that arise during processing or during service when parts are exposed...
Abstract
In an attempt to explain the stresses encountered in the plastics industry, this article first defines the different types of internal stresses in amorphous polymers. Each type of thermal stress is then discussed in detail, with reference to the mechanism of generation and the effect on engineering properties. Methods of detecting and measuring internal stresses are also presented. The article then describes the combined effects of thermal stresses and orientation that result from processing conditions. Finally, it discusses numerous aspects of physical aging and the use of high-modulus graphite fibers in amorphous polymers.
1