Skip Nav Destination
Close Modal
Search Results for
plastic parts
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 798 Search Results for
plastic parts
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Design and Selection of Plastics Processing Methods
> Characterization and Failure Analysis of Plastics
Published: 01 December 2003
Image
in Design and Selection of Plastics Processing Methods
> Characterization and Failure Analysis of Plastics
Published: 01 December 2003
Image
in Design and Selection of Plastics Processing Methods
> Characterization and Failure Analysis of Plastics
Published: 01 December 2003
Fig. 21 Boss designs for plastic parts. A, hollow boss; B, gussetted boss; C, solid boss; D, stepped boss; E, elongated boss
More
Image
in Design and Selection of Plastics Processing Methods
> Characterization and Failure Analysis of Plastics
Published: 01 December 2003
Image
Published: 01 October 2012
Image
in Design and Selection of Plastics Processing Methods
> Characterization and Failure Analysis of Plastics
Published: 01 December 2003
Fig. 6 Wall transitions in a plastic part. (a) Poor (sharp) transition. (b) Better (gradual) transition. (c) Best (smooth) transition
More
Image
in Design and Selection of Plastics Processing Methods
> Characterization and Failure Analysis of Plastics
Published: 01 December 2003
Image
in Characterization of Plastics in Failure Analysis[1]
> Characterization and Failure Analysis of Plastics
Published: 01 December 2003
Image
in Design and Selection of Plastics Processing Methods
> Characterization and Failure Analysis of Plastics
Published: 01 December 2003
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780064
EISBN: 978-1-62708-281-5
... Abstract This article describes key processing methods and related design, manufacturing, and application considerations for plastic parts and includes a discussion on materials and process selection methodology for plastics. The discussion covers the primary plastic processing methods and how...
Abstract
This article describes key processing methods and related design, manufacturing, and application considerations for plastic parts and includes a discussion on materials and process selection methodology for plastics. The discussion covers the primary plastic processing methods and how each process influences part design and the properties of the plastic part. It also includes a brief description of functional requirements in process selection; an overview of various process effects and how they affect the functions and properties of the part; and the selection of processes for size, shape, and design detail factors.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780051
EISBN: 978-1-62708-281-5
... of the article to be designed. This is followed by a discussion on several stages necessary to define the geometry of plastic parts. Details on the strength of and cost estimation for plastic parts are then provided. The article ends with a section providing information on the structure, properties, processing...
Abstract
To ensure the proper application of plastics, one must keep in mind three factors that determine the appropriate end-use: material selection, processing, and design. This article begins by providing information on various factors pertinent to the anticipated use conditions of the article to be designed. This is followed by a discussion on several stages necessary to define the geometry of plastic parts. Details on the strength of and cost estimation for plastic parts are then provided. The article ends with a section providing information on the structure, properties, processing, and end-use applications of plastics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780055
EISBN: 978-1-62708-281-5
... for predicting plastic part performance (stiffness, strength/impact, creep/stress relaxation, and fatigue) integrated with manufacturing concerns (flow length and cycle time) are demonstrated for design and material selection. plastics material selection materials design plastic parts stiffness impact...
Abstract
The key to any successful part development is the proper choice of material, process, and design matched to the part performance requirements. This article presents examples of reliable material performance indicators and common practices to avoid. Simple tools and techniques for predicting plastic part performance (stiffness, strength/impact, creep/stress relaxation, and fatigue) integrated with manufacturing concerns (flow length and cycle time) are demonstrated for design and material selection.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780177
EISBN: 978-1-62708-281-5
.... In addition, details on ad hoc tests used for determining the acceptability of a plastic part for its application are provided, along with typical examples. optical components optical test plastics plastic parts OPTICAL TESTING of plastics includes characterization of materials and analysis...
Abstract
This article is a brief account of various factors pertinent to the characterization of materials and analysis of optical components, namely transmission, haze, yellowness, refractive index, surface irregularity, birefringence, internal contamination, surface gloss, and color. In addition, details on ad hoc tests used for determining the acceptability of a plastic part for its application are provided, along with typical examples.
Image
in Dealing with Friction in Design Engineering
> Tribomaterials: Properties and Selection for Friction, Wear, and Erosion Applications
Published: 30 April 2021
Fig. 3.1 Example of a large, 3 m (10 ft.) diam. complex machine with many tribosystems, each station molds a plastic part. Friction was a limiting factor in its operation.
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550325
EISBN: 978-1-62708-307-2
.... It also includes continuous fiber-reinforced resins (composite materials) as well as the short fiber- and/or particulate-reinforced plastics commonly used for parts and components. Because composites are a subset of engineering plastics, they are addressed in much greater detail in Chapter 8, “Polymer...
Abstract
This chapter describes the molecular structures and chemical reactions associated with the production of thermoset and thermoplastic components. It compares and contrasts the mechanical properties of engineering plastics with those of metals, and explains how fillers and reinforcements affect impact and tensile strength, shrinkage, thermal expansion, and thermal conductivity. It examines the relationship between tensile modulus and temperature, provides thermal property data for selected plastics, and discusses the effect of chemical exposure, operating temperature, and residual stress. The chapter also includes a section on the uses of thermoplastic and thermosetting resins and provides information on fabrication processes and fastening and joining methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780216
EISBN: 978-1-62708-281-5
... Abstract This article discusses the material and engineering issues associated with plastic components subjected to impact. The first part covers the effects of loading rate, temperature, and state of stress on both deformation and mode of failure. It discusses standard impact tests, along...
Abstract
This article discusses the material and engineering issues associated with plastic components subjected to impact. The first part covers the effects of loading rate, temperature, and state of stress on both deformation and mode of failure. It discusses standard impact tests, along with their associated results. A brief discussion on the linear elastic fracture mechanics method is presented, along with an example of its effectiveness as a predictive tool for impact performance. Various issues with a bearing on impact performance, such as processing, chemical attack, and aging, are also described. The second part describes the engineering calculations used to predict the performance of thin plastic beams, plates, and shells. The issue of assuming small displacements for the calculation of plastic structure performance is discussed and its limitations described. An example of the consequence of the very low modulus of elasticity associated with plastics and some plastic design solutions are offered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780146
EISBN: 978-1-62708-281-5
... pervasive in order to be problematic. For example, degradation of a thin surface layer of material on a plastic part can facilitate premature failure or brittle failure under conditions where ductile failure would normally occur. All of this is further exacerbated by the effects of changing temperature...
Abstract
This article discusses the chemical susceptibility of a polymeric material. The discussion covers significant absorption and transportation of an environmental reagent by the polymer; the chemical susceptibility of additives; and thermal degradation, thermal oxidative degradation, photo-oxidative degradation, environmental corrosion, and chemical corrosion of polymers. It also includes some of the techniques used to detect changes in structure during polymer exposure to hostile environments. In addition, the article describes the effects of environment on polymer performance, namely plasticization, solvation, swelling, environmental stress cracking, polymer degradation, surface embrittlement, and temperature effects.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2011
DOI: 10.31399/asm.tb.jub.t53290279
EISBN: 978-1-62708-306-5
... product design, a molded one-piece item is the ideal situation because it eliminates assembly operations. However, mechanical limitations and other considerations often make it necessary to join plastic parts, either to each other or to other plastic or metal parts. In such instances, the joining process...
Abstract
This chapter reviews materials issues encountered in joining, including challenges involved in welding of dissimilar metal combinations; joining of plastics by mechanical fastening, solvent and adhesive bonding, and welding; joining of thermoset and thermoplastic composite materials by mechanical fastening, adhesive bonding, and, for thermoplastic composites, welding; the making of glass-to-metal seals; and joining of oxide and nonoxide ceramics to themselves and to metals by solid-state processes and by brazing. The classification, types, applications, and the mechanism of each of these methods are covered. The factors influencing joint integrity and the main considerations in welding dissimilar metal combinations are also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2011
DOI: 10.31399/asm.tb.cfw.t52860151
EISBN: 978-1-62708-338-6
... fiber. K H Kevlar. An organic polymer, in fiber form, com- hardener. A substance or mixture added to a posed of aromatic polyamides having a para- plastic composition to promote or control the type orientation (parallel chain with bonds curing action by taking part in it. extending from each aromatic...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250077
EISBN: 978-1-62708-345-4
... metal. Note high degree of linearity below the proportional limit. However, if the designer attempts to use these equations for plastics part design using a modulus value taken from a plastics property specifications sheet, serious design errors will be made in many cases. The implicit assumption...
Abstract
Plastic gears are continuing to displace metal gears in applications ranging from automotive components to office automation equipment. This chapter discusses the characteristics, classification, advantages, and disadvantages of plastics for gear applications. It provides a comparison between the properties of metals and plastics for designing gears. The chapter reviews some of the commonly used plastic materials for gear applications including thermoplastic and thermoset gear materials. The chapter also describes the processes involved in plastic gear manufacturing.
1