Skip Nav Destination
Close Modal
Search Results for
plastic degradation
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 337 Search Results for
plastic degradation
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780146
EISBN: 978-1-62708-281-5
..., namely plasticization, solvation, swelling, environmental stress cracking, polymer degradation, surface embrittlement, and temperature effects. chemical susceptibility thermal oxidative degradation photo-oxidative degradation environmental corrosion chemical corrosion plasticization solvation...
Abstract
This article discusses the chemical susceptibility of a polymeric material. The discussion covers significant absorption and transportation of an environmental reagent by the polymer; the chemical susceptibility of additives; and thermal degradation, thermal oxidative degradation, photo-oxidative degradation, environmental corrosion, and chemical corrosion of polymers. It also includes some of the techniques used to detect changes in structure during polymer exposure to hostile environments. In addition, the article describes the effects of environment on polymer performance, namely plasticization, solvation, swelling, environmental stress cracking, polymer degradation, surface embrittlement, and temperature effects.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780153
EISBN: 978-1-62708-281-5
... to degradation in plastics include temperature variations, moisture, sunlight, oxidation, microbiologic attack, and other environmental elements. The article also describes the tests used to predict the behavior of a plastic material to outdoor exposure, discussing the use of xenon arc lamp for the weatherometer...
Abstract
This article presents a general overview of outdoor weather aging factors, their effects on plastic materials, and the accelerated test methods that can be used to estimate the reaction of a plastic component during actual use. Weather and radiation factors that contribute to degradation in plastics include temperature variations, moisture, sunlight, oxidation, microbiologic attack, and other environmental elements. The article also describes the tests used to predict the behavior of a plastic material to outdoor exposure, discussing the use of xenon arc lamp for the weatherometer and fadeometer and the use of fluorescent sunlamp in test devices.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780329
EISBN: 978-1-62708-281-5
... wavelengths responsible for polymer photochemistry, problems with artificial light sources, general photooxidation and specific photochemical reactions important in plastics, and the factors influencing the rate of degradation. The approaches used to stabilize plastics against photochemical damage, including...
Abstract
This article provides a basic review of polymer photochemistry as it relates to the weatherability of engineering plastics, considering the chemistry induced by exposure to sunlight in open air. Elementary aspects of weatherability chemistry that are discussed include the light wavelengths responsible for polymer photochemistry, problems with artificial light sources, general photooxidation and specific photochemical reactions important in plastics, and the factors influencing the rate of degradation. The approaches used to stabilize plastics against photochemical damage, including ultraviolet light absorbers, oxidation inhibitors, and the use of protective coatings, are also considered.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780336
EISBN: 978-1-62708-281-5
... Abstract This article provides a review of the biodegradation mechanisms of plastics, presents the definitions, and describes the means of measurement of biodegradation and biodeterioration. Various experimental examples of microbial degradation, namely fungal attack in cellophane and amylose...
Abstract
This article provides a review of the biodegradation mechanisms of plastics, presents the definitions, and describes the means of measurement of biodegradation and biodeterioration. Various experimental examples of microbial degradation, namely fungal attack in cellophane and amylose films, starch-based polyethylene films, films with modified starch additives, poly(3-hydroxybutyrate-valerate)-biodegradable plastic, and biodisintegration and biodegradation studies of plastic-starch blends, are also presented.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780359
EISBN: 978-1-62708-281-5
... and hydrolysis. Molecular degradation, often involving molecular weight reduction, has a significant detrimental impact on the mechanical and physical properties of a plastic material. This degradation can result from several stages in the product life, including resin compounding, molding, and service...
Abstract
This article reviews various analytical techniques most commonly used in plastic component failure analysis. The description of the techniques is intended to make the reader familiar with the general principles and benefits of the methodologies. The descriptions of the analytical techniques are supplemented by a series of case studies that include pertinent visual examination results and the corresponding images that aided in the characterization of the failures. The techniques covered include Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, thermomechanical analysis, and dynamic mechanical analysis. The article also discusses various analytical methods used to characterize the molecular weight distribution of a polymeric material. It provides information on a wide range of mechanical tests that are available to evaluate plastics and polymers, covering the various considerations in the selection and use of test methods.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2012
DOI: 10.31399/asm.tb.ffub.t53610327
EISBN: 978-1-62708-303-4
..., it covers general characteristics, viscoelastic properties, and static strength. It also discusses fatigue life, impact strength, fracture toughness, and stress-rupture behaviors as well as environmental effects such as plasticization, solvation, swelling, stress cracking, degradation, and surface...
Abstract
This chapter covers the fatigue and fracture behaviors of ceramics and polymers. It discusses the benefits of transformation toughening, the use of ceramic-matrix composites, fracture mechanisms, and the relationship between fatigue and subcritical crack growth. In regard to polymers, it covers general characteristics, viscoelastic properties, and static strength. It also discusses fatigue life, impact strength, fracture toughness, and stress-rupture behaviors as well as environmental effects such as plasticization, solvation, swelling, stress cracking, degradation, and surface embrittlement.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2015
DOI: 10.31399/asm.tb.cpi2.t55030148
EISBN: 978-1-62708-282-2
... damage, and reviews hydrogen degradation in specific ferrous and nonferrous alloys. The preeminent theories for hydrogen damage are based on pressure, surface adsorption, decohesion, enhanced plastic flow, hydrogen attack, and hydride formation. The specific alloys covered are iron-base, nickel, aluminum...
Abstract
Hydrogen damage is a form of environmentally assisted failure that results most often from the combined action of hydrogen and residual or applied tensile stress. This chapter classifies the various forms of hydrogen damage, summarizes the various theories that seek to explain hydrogen damage, and reviews hydrogen degradation in specific ferrous and nonferrous alloys. The preeminent theories for hydrogen damage are based on pressure, surface adsorption, decohesion, enhanced plastic flow, hydrogen attack, and hydride formation. The specific alloys covered are iron-base, nickel, aluminum, copper, titanium, zirconium, vanadium, niobium, and tantalum alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780314
EISBN: 978-1-62708-281-5
... attack of structural plastics by water itself is somewhat rare. Well-known exceptions are the hot-water degradation of polycarbonate (PC) and the thermosetting polyesters. It is significant that in cases involving no attack of a plastic by an active ion, the presence of dissolved ion actually may act...
Abstract
This article describes the mechanisms of moisture-induced damage in polymeric materials, covering the characteristics of important structural plastics; the effects of moisture on glass transition temperature, modulus, creep, and stress relaxation of plastic materials; and moisture-induced fatigue failure in composites. The effect of moisture on the mechanical properties of thermoset resins and thermoplastics are also discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2005
DOI: 10.31399/asm.tb.faesmch.t51270158
EISBN: 978-1-62708-301-0
... on their observations and the results of SEM fractography, investigators concluded that tensile overload was the predominate cause of failure. fractography visual examination wing control cable Summary A failed wing control cable of an aircraft was investigated. There was general degradation of the wire...
Abstract
This chapter discusses the failure of a control cable on an aircraft and the findings of an investigation that followed. The cable was made of stranded steel wire that was visibly worn. All seven strands had snapped and bore evidence of corrosion, pitting, nicks, and rubbing. Based on their observations and the results of SEM fractography, investigators concluded that tensile overload was the predominate cause of failure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730149
EISBN: 978-1-62708-283-9
... Abstract This chapter discusses recycling processes used for metals, plastics, rubber, glass, and paper. Is also describes the advantages of recycled materials. recycled materials recycling Metals More than 80% of steel is made from recycled material. Steel and iron can easily...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780028
EISBN: 978-1-62708-281-5
... is incorporated into the plastic from the physical introduction of air or nitrogen, the degradation of chemical blowing agents, or the addition of microballoons (hollow glass or plastic microspheres) to the polymer. This gas phase reduces the weight and thermal conductivity of the plastic. While the resulting...
Abstract
This article describes in more detail the fundamental building-block level, atomic, then expands to a discussion of molecular considerations, intermolecular structures, and finally supermolecular issues. An explanation of important thermal, mechanical, and physical properties of engineering plastics and commodity plastics follows, and the final section briefly outlines the most common plastics manufacturing processes.
Book Chapter
Book: Systems Failure Analysis
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2009
DOI: 10.31399/asm.tb.sfa.t52780141
EISBN: 978-1-62708-268-6
... of mechanical interference, preventing hydraulic actuators from working, valves from fully closing, or many other types of failures due to inhibited motion. Contaminants can degrade bond joints and welds. Contaminants can interfere with switches closing properly. Contaminants can degrade energetic...
Abstract
Contaminants can be a cause of numerous types of system failures. There are numerous techniques for confirming contaminant presence. When the presence of a contaminant is suspected, the failure analysis team must find and eliminate the contaminant source, which can be obvious or quite subtle. This chapter summarizes a few commonly encountered contaminant sources to stimulate the reader's thinking about potential contaminant sources. A case study of titanium component washing at Litton Lasers is presented to illustrate how the presence of contaminants leads to a system failure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2005
DOI: 10.31399/asm.tb.gmpm.t51250077
EISBN: 978-1-62708-345-4
... chemical change during processing to become permanently infusible ( Ref 2 ). If excessive heat is applied to a thermoset material after the chemical change has taken place, the plastic is degraded rather than melted. Before the processing, the molecular structure of the thermoset plastic is similar...
Abstract
Plastic gears are continuing to displace metal gears in applications ranging from automotive components to office automation equipment. This chapter discusses the characteristics, classification, advantages, and disadvantages of plastics for gear applications. It provides a comparison between the properties of metals and plastics for designing gears. The chapter reviews some of the commonly used plastic materials for gear applications including thermoplastic and thermoset gear materials. The chapter also describes the processes involved in plastic gear manufacturing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780404
EISBN: 978-1-62708-281-5
... material such as thermoplastic polymers. Thermoset plastics are brittle. Viscoplastic deformation depends on temperature and strain rate. As the temperature is decreased, the material undergoes a glass transition, and if the pendant group is not too complex, the material may partially crystallize...
Abstract
This article introduces the subject of fractography and how it is used in failure analysis. The discussion covers the structure of and fracture and crack-propagation behavior of polymeric materials, the distinction between the ductile and brittle fracture modes on the basis of macroscopic appearance, and the examination and interpretation of the features of fracture surfaces. In addition, the article considers several cases of field failure in various polymers to illustrate the applicability of available analytical tools in conjunction with an understanding of failure mechanisms.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2012
DOI: 10.31399/asm.tb.lmub.t53550325
EISBN: 978-1-62708-307-2
... because of the softening of thermoplastic plastics or degradation of thermosetting plastics. Some plastics degrade when subjected to sunlight, other forms of radiation, and some chemicals. Thermoplastics exhibit viscoelastic properties, which means they creep under relatively low stress levels...
Abstract
This chapter describes the molecular structures and chemical reactions associated with the production of thermoset and thermoplastic components. It compares and contrasts the mechanical properties of engineering plastics with those of metals, and explains how fillers and reinforcements affect impact and tensile strength, shrinkage, thermal expansion, and thermal conductivity. It examines the relationship between tensile modulus and temperature, provides thermal property data for selected plastics, and discusses the effect of chemical exposure, operating temperature, and residual stress. The chapter also includes a section on the uses of thermoplastic and thermosetting resins and provides information on fabrication processes and fastening and joining methods.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2019
DOI: 10.31399/asm.tb.mfadr7.t91110524
EISBN: 978-1-62708-247-1
... white light by using phosphors. Early work showed that the plastics that were used “yellowed” with age, absorbing increasing amounts of the blue light. The yellowing dominated the degradation observed [27] . Common Detector Failure Mechanisms Among photodetectors, dark currents are typically...
Abstract
Optoelectronic components can be readily classified as active light-emitting components (such as semiconductor lasers and light emitting diodes), electrically active but non-emitting components, and inactive components. This chapter focuses on the first category, and particularly on semiconductor lasers. The discussion begins with the basics of semiconductor lasers and the material science behind some causes of device failure. It then covers some of the common failure mechanisms, highlighting the need to identify failures as wearout or maverick failures. The chapter also covers the capabilities of many key optoelectronic failure analysis tools. The final section describes the common steps that should be followed so as to assure product reliability of optoelectronic components.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.cfap.t69780343
EISBN: 978-1-62708-281-5
... pertinent to structure analysis. This is followed by a review of the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy. The article then provides information on the distribution of molecular weight of an engineering plastic. It further discusses the methods used in thermal...
Abstract
This article introduces procedures an engineer or materials scientist can use to investigate failures. It provides a brief survey of polymer systems and key properties that need to be measured during failure analysis. The article begins with an overview of the problem-solving approach pertinent to structure analysis. This is followed by a review of the characterization of plastics by infrared and nuclear magnetic resonance spectroscopy. The article then provides information on the distribution of molecular weight of an engineering plastic. It further discusses the methods used in thermal analysis, namely differential thermal analysis, thermogravimetric analysis, thermal-mechanical analysis, and dynamic mechanical analysis. The following sections provide details on X-ray diffraction for analyzing crystalline phases and on a minimal scheme for polymer analysis and characterization to assist the design engineer. The article ends with a discussion on the thermal-analytical scheme for analyzing the milligram quantities of polymer samples.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2013
DOI: 10.31399/asm.tb.ems.t53730099
EISBN: 978-1-62708-283-9
..., inorganic compounds, and nanomaterials. Degradation There is a spectrum of interactions between plastics and solvents. There is no interaction of polyethylene or polyethylene terephthalate with water. Other plastics will absorb a solvent and swell. Examples include nylon in water and PVC in ketones...
Abstract
This chapter discusses the structural classifications, molecular configuration, degradation, properties, and uses of polymers. It describes thermoplastic and thermosetting polymers, degree of polymerization, branching, cross-linking, and copolymers. It also discusses glass transition temperatures, additives, and the effect of stretching on thermoplastics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430149
EISBN: 978-1-62708-253-2
... direction as well. The visual appearance of the fracture is like a fish mouth . Based on the degree of plastic deformation and the resultant thinning that the tube undergoes prior to fracture, it is called a thick-lip or thin-lip fish-mouth fracture. Depending on the time to which the tube has been...
Abstract
Boiler tubes operating at high temperatures under significant pressure are vulnerable to stress rupture failures. This chapter examines the cause, effect, and appearance of such failures. It discusses the conditions and mechanisms that either lead to or are associated with stress rupture, including overheating, high-temperature creep, graphitization, and dissimilar metal welds. It explains how to determine which mechanisms are in play by interpreting fracture patterns and microstructural details. It also describes the investigation of several carbon and low-alloy steel tubes that failed due to stress rupture.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2021
DOI: 10.31399/asm.tb.tpsfwea.t59300301
EISBN: 978-1-62708-323-2
... Abstract This chapter covers the friction and wear behaviors of plastics and elastomers. It begins by describing the molecular differences between the two types of polymers and their typical uses. It then discusses the important attributes of engineering plastics and their suitability...
Abstract
This chapter covers the friction and wear behaviors of plastics and elastomers. It begins by describing the molecular differences between the two types of polymers and their typical uses. It then discusses the important attributes of engineering plastics and their suitability for applications involving friction, erosion, and adhesive and abrasive wear. It also discusses the tribology of elastomers and rubber along with their basic differences and the conditions under which they produce Schallamach waves. It includes information on polymer composites as well.
1