Skip Nav Destination
Close Modal
Search Results for
plasma-enhanced CVD
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 37 Search Results for
plasma-enhanced CVD
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book: Introduction to Thin Film Deposition Techniques: Key Topics in Materials Science and Engineering
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2023
DOI: 10.31399/asm.tb.itfdtktmse.t56060013
EISBN: 978-1-62708-440-6
...-enhanced CVD process temperature sputtering thin film purity vacuum ion plating Problem 1 Gas leaks into a vacuum chamber at a rate of 5 cm 3 atm sec −1 . The pump has a volumetric flow rate of 2000 liters sec −1 . Calculate the limiting achievable pressure. Solution P = Q / S...
Book Chapter
Book: Introduction to Thin Film Deposition Techniques: Key Topics in Materials Science and Engineering
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2023
DOI: 10.31399/asm.tb.itfdtktmse.t56060001
EISBN: 978-1-62708-440-6
...) processes, including atomic layer deposition, plasma-enhanced and plasma-assisted CVD, and various forms of vapor-phase epitaxy, which are commonly used for compound films or when deposit purity is less critical. A brief application overview is also presented. arc-PVD chamber pressure chemical...
Abstract
This chapter presents the theory and practice associated with the application of thin films. The first half of the chapter describes physical deposition processes in which functional coatings are deposited on component surfaces using mechanical, electromechanical, or thermodynamic techniques. Physical vapor deposition (PVD) techniques include sputtering, e-beam evaporation, arc-PVD, and ion plating and are best suited for elements and compounds with moderate melting points or when a high-purity film is required. The remainder of the chapter covers chemical vapor deposition (CVD) processes, including atomic layer deposition, plasma-enhanced and plasma-assisted CVD, and various forms of vapor-phase epitaxy, which are commonly used for compound films or when deposit purity is less critical. A brief application overview is also presented.
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2023
DOI: 10.31399/asm.tb.itfdtktmse.9781627084406
EISBN: 978-1-62708-440-6
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900305
EISBN: 978-1-62708-358-4
... and TiN coating reactions are relatively high, around 1000 °C (1830 °F). However, CVD deposition temperatures can be lowered if the CVD reactions are carried out in an environment of glow discharge plasmas maintained at the substrate/vapor interface ( Ref 37 ). These processes are referred to as plasma...
Abstract
Surface modification technologies improve the performance of tool steels. This chapter discusses the processes involved in oxide coatings, nitriding, ion implantation, chemical and physical vapor deposition processing, salt bath coating, laser and electron beam surface modification, and boride coatings that improve the performance of hot-work and high-speed tool steels.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500317
EISBN: 978-1-62708-317-1
... in the vapor phase ( Fig. 16.20 ). As shown in Fig. 16.14 , typical coating thicknesses are 4 to12 μm, and process temperatures are typically around 800 to 1050 °C (1475 to 1925 °F). However, recent technology enabled plasma-assisted CVD (also known as plasma-enhanced CVD), which can reduce the process...
Abstract
This chapter discusses the types of failures that can occur in sheet metal forming tools and explains how to mitigate their effects. It describes the factors that influence galling and wear and the benefits of special treatments and coatings. It provides information on through hardening, case (surface) hardening, and nitriding as well as hard chrome plating, vapor deposition, and thermal diffusion coating. It explains how to measure wear resistance using various tests and provides guidelines for selecting tool materials, treatments, and coatings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410551
EISBN: 978-1-62708-265-5
.... Source: Ref 22.40 , 22.41 Fig. 22.12 ZrN coating deposited by triode ion plating. Scanning electron micrograph. Courtesy of A.S. Korhonen, Helsinki University of Technology. Source: Ref 22.40 , 22.41 Chemical Vapor Deposition Chemical vapor deposition (CVD) is a coating process...
Abstract
This chapter describes surface modification processes that go beyond conventional heat treatments, including plasma nitriding, plasma carburizing, low-pressure carburizing, ion implantation, physical and chemical vapor deposition, salt bath coating, and transformation hardening via high-energy laser and electron beams. The chapter compares methods and includes several example applications.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 July 2009
DOI: 10.31399/asm.tb.bcp.t52230361
EISBN: 978-1-62708-298-3
... in the following order: sputtering, evaporation, CVD, electroplating, and plasma spraying [ Beat 2005 ]. 22.2 Physical Vapor Deposition Physical vapor deposition processes involve the creation and condensation of vapors onto substrates to form coatings or films. Figure 22.1 illustrates schematically...
Abstract
This chapter discusses coating technologies that are applicable to beryllium, including physical and chemical vapor deposition, thermal evaporation, electroplating, sputtering, ion plating, and plasma arc spraying. It describes the advantages and disadvantages of each method and the effect of temperature, pressure, and other process variables on the microstructures and properties developed.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350125
EISBN: 978-1-62708-315-7
... 2.5–250 0.1–10 49–70 (Ni-P) Very good (Ni-P) No 85–95 185–205 Liquid Atmosphere <1–10 Yes No CVD 1–1300 0.04–50 90–92 (TiC) Very good No 820–1200 1500–2200 0.013–100 0.1–760 10–60 Yes Reheat treatment PVD 0.025–10 0.001–0.4 93–95 (B 4 C) Excellent Yes 95–540 200...
Abstract
This chapter discusses the use of coating methods and materials and their impact on corrosion and wear behaviors. It provides detailed engineering information on a wide range of processes, including organic, ceramic, and hot dip coating, metal plating and cladding, and the use of weld overlays, thermal spraying, and various deposition technologies.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740325
EISBN: 978-1-62708-308-9
... acids, such as citric, oxalic, acetic, tartaric, and gluconic acids, occupy an important place in acid cleaning because of their chelating capability. Phosphoric Acid Etching Phosphoric acid is often used as an etchant for nonferrous metals (such as copper, brass, aluminum, and zinc) to enhance...
Abstract
This chapter covers a wide range of finishing and coating operations, including cleaning, honing, polishing and buffing, and lapping. It discusses the use of rust-preventative compounds, conversion coatings, and plating metals as well as weld overlay, thermal spray, and ceramic coatings and various pack cementation and deposition processes. It also discusses the selection and use of industrial paints and paint application methods.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2022
DOI: 10.31399/asm.tb.tstap.t56040020
EISBN: 978-1-62708-428-4
... and droplet deposition. The coatings exhibit similar quality to those produced by physical vapor deposition (PVD) or chemical vapor deposition (CVD); however, the VLPPS deposition rates can be an order of magnitude higher. The VLPPS process can be used to produce dense, high quality coatings in the 1 to 100...
Abstract
This article summarizes the results of work completed by the ASM Thermal Spray Society Advisory Committee to identify key research challenges and opportunities in the thermal spray field. It describes and prioritizes research priorities related to emerging process methods, thermal spray markets and applications, and process robustness, reliability, and economics.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900071
EISBN: 978-1-62708-350-8
... the thin-film material can bond. An example of thin-film processing is plasma-assisted chemical vapor deposition (PA-CVD) using chromium, tungsten, aluminum, titanium, metallic-carbon combinations, or other materials. Techniques are available for creating duplex thin-film deposits. What Happens...
Abstract
This chapter begins with an overview of the history of ion nitriding. This is followed by sections that describe how the ion nitriding process works, glow discharge characteristics, process parameters requiring good control, and the applications of plasma processing. The chapter explores what happens in the ion nitriding process and provides information on its gas ratios. It describes the reactions that occur at the surface of the material being treated during iron nitriding and defines corner effect and nitride networking. Further, the chapter provides information on the stability of surface layers and processes involved in the degradation of surface finish and control of the compound zone formation. Gases primarily used for ion nitriding and the control parameters used in ion nitriding are also covered. The chapter also presents the philosophies and advantages of the plasma generation technique for nitriding. It concludes with processes involved in oxynitriding.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240411
EISBN: 978-1-62708-251-8
... required to produce martensite. Many tool steels have molybdenum, chromium, and manganese as alloying additions to improve hardenability. A high carbon content is required to obtain tempered martensite with a high hardness. In addition, wear resistance is enhanced by the presence of hard second-phase...
Abstract
There is a fairly wide variety of different tool steels for different applications. The American Iron and Steel Institute (AISI) classification of tool steels includes seven major categories: water-hardening tool steels, shock-resisting tool steels, cold work tool steels, hot work tool steels, low-alloy special-purpose tool steels, mold tool steels, high-speed tool steels, and powder metallurgy tool steels. This chapter provides discusses the manufacturing process, composition, properties, types, and applications of these tool steels and other cutting tool materials, such as cemented carbides. It also describes the methods of applying coatings to cutting tools to improve tool life.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2022
DOI: 10.31399/asm.tb.dsktmse.t56050001
EISBN: 978-1-62708-432-1
... Characteristics of different types of diffusion treatments Type of nitriding Processing temperature Diffused case depth Case hardness, HRC Features °C °F Pack aluminizing 870–1050 1600–1920 25 μm–0.7 mm <20 Good for oxidation resistance, pack disposal issues Siliconizing (CVD) 925...
Abstract
A working knowledge of diffusion is necessary to understand and predict the behavior of metals and alloys during manufacturing and in certain types of service. This chapter covers the fundamentals of diffusion in solids and some of the applications in which diffusion plays a role. It discusses the mechanisms behind interstitial, substitutional, grain boundary, and surface diffusion, the derivation and use of Fick’s laws, and the basic principles of diffusion coating processes, including carburizing, nitriding, nitrocarburizing, cyaniding, carbonitriding, boriding, aluminizing, siliconizing, chromizing, vanadizing, and titanizing. It also discusses diffusion bonding and presents several approaches for dealing with oxide barrier problems.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.stg2.t61280287
EISBN: 978-1-62708-267-9
... laboratory tests must be verified by engine testing. Microscopic and macroscopic examination are important in revealing the extent of oxidation or hot corrosion damage. Visual appearance, enhanced by etching in some instances, is used to determine: Amount of coating lost (or remaining) Depth...
Abstract
Superalloys tend to operate in environments where they are subjected to high-temperature corrosion, oxidation, and the erosive effects of hot gases. This chapter discusses the nature of these attacks and the effectiveness of various protection methods. It describes the primary forms of oxidation, the development of protective oxides, and the conditions associated with mixed gas corrosion and hot corrosion attack. It discusses oxidation and corrosion testing, the equipment used, and various ways to present the associated data. It describes the effect of gaseous oxidation on different alloys, discusses the formation of oxide scale in the presence of mixed gases, and explains how alloy composition contributes to oxide growth. The chapter discusses the underlying chemistry of hot corrosion, how to identify its effects, and how it progresses under various conditions. It also discusses protective coatings, including aluminide diffusion, overlay, and thermal barrier types, and how they perform in different environments based on their ability to tolerate strain.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500107
EISBN: 978-1-62708-317-1
... ( Ref 6.34 ). Duplex treatment of tools that involve plasma nitriding followed by PVD coating could reduce the required lubrication by 75% compared to conventional CVD and offer better antigalling and wear resistance properties ( Ref 6.34 ). Recent studies indicate that several amorphous hard carbon...
Abstract
This chapter discusses the forming characteristics of dual-phase (DP) and transformation-induced plasticity (TRIP) steels. It begins with a review of the mechanical behavior of advanced high-strength steels (AHSS) and how they respond to stress-strain conditions associated with deformation processes such as stretching, bending, flanging, deep drawing, and blanking. It then describes the complex tribology of AHSS forming operations, the role of lubrication, the effect of tool steels and coatings, and the force and energy requirements of various forming presses. It also discusses the cause of springback and explains how to predict and compensating for its effects.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2011
DOI: 10.31399/asm.tb.mnm2.t53060273
EISBN: 978-1-62708-261-7
..., and small amounts of vanadium are added to maintain fine grain size and thus enhance toughness. Group W tool steels are made with various nominal carbon contents (~0.60 to 1.40%); the most popular grades contain approximately 1.00% C. Group W steels have low resistance to softening at elevated temperatures...
Abstract
Tool steels are a special class of alloys designed for tool and die applications. High-speed steels are a subset of tool steels designed to operate at high speeds. This chapter describes the composition, properties, heat treatment, and use of wrought and alloyed tool steels, high-speed steels, and their counterparts made by powder metallurgy. It includes information on the chemical composition and application range of many commercial tool steels and explains how to apply coatings that reduce friction, thermal conductivity, and wear.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350231
EISBN: 978-1-62708-315-7
... that peaks in the topography of the surface are dissolved preferentially. chemical vapor deposition (CVD). A coating process, similar to gas car- burizing and carbonitriding, whereby a reactant atmosphere gas is fed into a processing chamber where it decomposes at the surface of the workpiece, liberating one...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.9781627083157
EISBN: 978-1-62708-315-7
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 1999
DOI: 10.31399/asm.tb.caaa.t67870179
EISBN: 978-1-62708-299-0
..., such as nickel and titanium, applied by chemical vapor deposition (CVD), physical vapor deposition (PVD), and electroplating methods also provide barrier protection; however, graphite/aluminum corrosion at coating flaw sites is much worse for these coatings than for an organic coating. This is due to the highly...
Abstract
This chapter discusses the ambient-temperature corrosion characteristics of aluminum metal-matrix composites (MMCs), including composites formed with boron, graphite, silicon carbide, aluminum oxide, and mica. It also discusses the effect of stress-corrosion cracking on graphite-aluminum composites and the use of protective coatings and design criteria for corrosion prevention.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 September 2022
DOI: 10.31399/asm.tb.dsktmse.9781627084321
EISBN: 978-1-62708-432-1
1