Skip Nav Destination
Close Modal
Search Results for
plasma carburizing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 113 Search Results for
plasma carburizing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
in Surface Engineering to Change the Surface Chemistry
> Surface Engineering for Corrosion and Wear Resistance
Published: 01 March 2001
Fig. 6 Carbon gradient profile of atmosphere, vacuum, and plasma carburizing of AISI 8620 steel at 980 °C (1800 °F) saturation conditions for 30 min and followed by direct oil quenching. Source: Ref 12
More
Image
Published: 01 January 2015
Fig. 22.2 (a) Plasma-carburized 8719 steel. (b) Gas-carburized 8719 steel. Both specimens nickel plated and unetched. Light micrographs. Source: Ref 22.22
More
Image
Published: 01 November 2007
Fig. 17.11 Carbon profiles of a plasma-carburized 1020 steel after the boost and diffusion steps compared to the profile produced by standard gas carburization. Source: Ref 17.2 , p 355
More
Image
Published: 01 June 2008
Image
Published: 01 November 2013
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240395
EISBN: 978-1-62708-251-8
... Abstract This chapter discusses the process characteristics, advantages, disadvantages, and applications of various processes involved in surface hardening of steel. These include pack carburizing, liquid carburizing, gas carburizing, vacuum carburizing, plasma carburizing, gas nitriding...
Abstract
This chapter discusses the process characteristics, advantages, disadvantages, and applications of various processes involved in surface hardening of steel. These include pack carburizing, liquid carburizing, gas carburizing, vacuum carburizing, plasma carburizing, gas nitriding, liquid nitriding, carbonitriding, and hardfacing. The chapter describes two surface hardening processes by localized heat treatment: flame hardening and induction hardening. It also briefly summarizes other surface hardening processes, namely, aluminizing, siliconizing, chromizing, titanium carbide coatings, and boronizing.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410551
EISBN: 978-1-62708-265-5
... This chapter describes surface modification processes that go beyond conventional heat treatments, including plasma nitriding, plasma carburizing, low-pressure carburizing, ion implantation, physical and chemical vapor deposition, salt bath coating, and transformation hardening via high-energy...
Abstract
This chapter describes surface modification processes that go beyond conventional heat treatments, including plasma nitriding, plasma carburizing, low-pressure carburizing, ion implantation, physical and chemical vapor deposition, salt bath coating, and transformation hardening via high-energy laser and electron beams. The chapter compares methods and includes several example applications.
Image
Published: 01 January 2015
Fig. 21.33 Stress versus cycles for bending fatigue of 8719 steel. Specimens were either gas carburized or plasma carburized and direct quenched after carburizing or reheated as marked. Source: Ref 21.57
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140189
EISBN: 978-1-62708-264-8
... of approximately 900 °C (1650 °F). See Ref 17.6 for more discussion. Plasma and Vacuum Carburizing Atmospheric pressure is 760 mm of mercury, or 14.7 lb/in. 2 . If electrodes are sealed into either end of a glass tube, the pressure inside the tube is reduced to between 1 to 20 mm with a vacuum pump...
Abstract
The design requirements for mechanical shafts, pinions, and gears often call for features with very hard surfaces (to resist wear) based on a softer core (to avoid brittle fracture). This chapter explains how to selectively harden steel by diffusing carbon and nitrogen atoms into the outer surface layers. It discusses several such surface-hardening processes, including carburizing, nitriding, carbonitriding, and nitrocarburizing.
Image
in Influential Microstructural Features
> Carburizing<subtitle>Microstructures and Properties</subtitle>
Published: 01 December 1999
Fig. 5.14 Fatigue limits of plasma and gas-carburized specimens as a function of austenitic grain size. A, retained austenite. Source: Ref 23
More
Image
Published: 01 December 1999
Fig. 4.16 Fatigue limits of plasma and gas-carburized specimens as a function of retained austenite content.
More
Image
in Sources of Failures in Carburized and Carbonitrided Components
> Failure Analysis of Heat Treated Steel Components
Published: 01 September 2008
Fig. 19 Fatigue limits of plasma- and gas-carburized test specimens as a function of retained austenite content
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350183
EISBN: 978-1-62708-315-7
... and Canada ( Ref 1 ), 70% offered carburizing services, of which: 48% offered gas atmosphere carburizing 19% offered pack carburizing 12% offered salt-bath carburizing 5% offered carburizing in fluid beds 2% offered vacuum carburizing 1% offered plasma (ion) carburizing Thus...
Abstract
This chapter compares and contrasts surface-engineering processes based on process availability, corrosion and wear performance, distortion effects, penetration depth or attainable coating thickness, and cost. It provides both quantitative and qualitative information as well as measured property values.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2001
DOI: 10.31399/asm.tb.secwr.t68350095
EISBN: 978-1-62708-315-7
... 8 ). Carburizing methods include gas carburizing, vacuum carburizing, plasma (ion) carburizing, salt-bath carburizing, and pack carburizing. These methods introduce carbon by use of an atmosphere (atmospheric gas, plasma, and vacuum), liquids (salt bath), or solid compounds (pack). The vast majority...
Abstract
This chapter provides practical information on surface treatments that work by altering the surface chemistry of metals and alloys. It discusses the use of phosphate and chromate conversion coatings as well as anodizing, steam oxidation, diffusion coatings, and pack cementation. The chapter also covers ion implantation and laser alloying.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 30 April 2024
DOI: 10.31399/asm.tb.phtpp.t59380039
EISBN: 978-1-62708-456-7
... be oxidizing to the parts. Atomic nitrogen generally comes from ammonia or the plasma of ion nitriding. Hydrogen can come from water vapor, hydrogen gas, or hydrocarbon gases (e.g., natural gas, light fuel oil, butane, or propane). Sulfur comes from contact with sulfur-containing fuels or residual...
Abstract
This chapter discusses furnace atmospheres. It describes how furnace atmospheres protect metals, transfer heat, and supply alloying elements (carbon and nitrogen). The chapter focuses on the different types of atmospheres that are available to the heat treater: combustion products, air, exothermic, salt, nitrogen, endothermic, ammonia, hydrogen, inert gas, and vacuum.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1999
DOI: 10.31399/asm.tb.cmp.t66770011
EISBN: 978-1-62708-337-9
... than a coarse grained specimen without surface oxidation.” In their work, which compared plasma- and gas-carburized test pieces, the gas-carburized specimens contained internal oxidation to a depth of ~13 μm without the HTTP associated with internal oxidation; this supports the idea that, on its own...
Abstract
Gas carburizing is known to promote internal oxidation in steel which can adversely affect certain properties. This chapter discusses the root of the problem and its effect on component lifetime and performance. It explains that gas-carburizing atmospheres contain water vapor and carbon dioxide, providing oxygen that reacts with alloying elements, particularly manganese, chromium, and silicon. It examines the composition and distribution of oxides produced in different steels and assesses the resulting composition gradients. It describes how these changes influence the development of high-temperature transformation products as well as microstructure, hardenability, and carbon content and properties such as fatigue and fracture behaviors, hardness, and wear resistance. It also explains how to manage internal oxidation through material design, process control, and other measures.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2013
DOI: 10.31399/asm.tb.mfub.t53740271
EISBN: 978-1-62708-308-9
... various steels respond to heat treatments, such as annealing, normalizing, spheroidizing, tempering, and direct and interrupted quenching, and surface-hardening processes, such as flame and induction hardening, carburizing, nitriding, and carbonitriding. It also addresses the issue of temper embrittlement...
Abstract
This chapter discusses the processes used in manufacturing to thermally alter the properties of metals and alloys. It begins with a review of the iron-carbon system, the factors that affect hardenability, and the use of continuous cooling transformation diagrams. It then explains how various steels respond to heat treatments, such as annealing, normalizing, spheroidizing, tempering, and direct and interrupted quenching, and surface-hardening processes, such as flame and induction hardening, carburizing, nitriding, and carbonitriding. It also addresses the issue of temper embrittlement and discusses the effect of precipitation hardening on aluminum and other alloys.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2006
DOI: 10.31399/asm.tb.pht2.t51440141
EISBN: 978-1-62708-262-4
..., “Boost/Diffuse Cycles for Carburizing.” Plasma (Ion) Carburizing An alternative vacuum process for carburizing offering faster carbon diffusion rates, better case uniformity, and less part distortion than either atmosphere or conventional vacuum carburizing is plasma (ion) carburizing. A complete...
Abstract
This chapter discusses hardening processes that involve changes in surface composition. These case hardening treatments are broadly classified into four groups: carburizing, carbonitriding, nitriding, and nitrocarburizing. Key parameters and operating considerations for each treatment are discussed.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2015
DOI: 10.31399/asm.tb.spsp2.t54410499
EISBN: 978-1-62708-265-5
..., and thermochemical, where surface chemistry is changed during heating, for example nitriding and carburizing. In this chapter carburizing and nitriding produced in conventional gas atmospheres are discussed; plasma and vacuum carburizing and plasma nitriding are described in Chapter 22, “Surface Modification...
Abstract
Mechanical components often require surface treatments to meet application demands. This chapter describes several surface hardening treatments for steel and their effect on microstructure, composition, and properties. It discusses flame hardening, induction heating, carburizing, nitriding, carbonitriding, and nitrocarburizing. The discussion on carburizing addresses several interrelated factors, including processing principles, alloying, surface oxidation, residual stresses, bending fatigue, contact fatigue, and fracture.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320189
EISBN: 978-1-62708-347-8
.... , Mishawaka, IN , 1977 • Nitralloy and the Nitriding Process , The Nitralloy Corporation , New York , 1954 • Nitreg Nitriding Technology , Nitrex Metal, Inc. , Canada , 1991 • Plasma-Triding , Metal Plasma Technology , Valencia, CA • “Recommended Practice for Carburized...
1