Skip Nav Destination
Close Modal
Search Results for
planing
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 957 Search Results for
planing
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240631
EISBN: 978-1-62708-251-8
... Abstract This appendix explains how to identify crystallographic planes and directions. It shows how Miller indices, a system for specifying crystallographic planes within a unit cell, are determined for cubic and hexagonal systems. It also explains how x-ray diffraction techniques are used...
Abstract
This appendix explains how to identify crystallographic planes and directions. It shows how Miller indices, a system for specifying crystallographic planes within a unit cell, are determined for cubic and hexagonal systems. It also explains how x-ray diffraction techniques are used in the study of crystalline structures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540395
EISBN: 978-1-62708-309-6
... Abstract This appendix contains figures that illustrate specimen orientation and crack plane codes for rolled plate, drawn bars, and hollow cylinders. drawn bars fracture plane hollow cylinders rolled plate specimen orientation Fig. A6.1 Conventional specimen orientation code...
Image
in Dealing with Friction in Design Engineering
> Tribomaterials: Properties and Selection for Friction, Wear, and Erosion Applications
Published: 30 April 2021
Fig. 3.3 Schematic of the ASTM G214 inclined plane friction test. Plane “a” is raised until weight “w” starts to slide down the plane. The tangent of the angle at which motion occurs “θ” is the breakaway of static coefficient of friction.
More
Image
in Static and Dynamic Fracture Toughness of Metals
> Mechanics and Mechanisms of Fracture: An Introduction
Published: 01 August 2005
Image
Published: 01 August 2005
Image
in Deformation and Fracture Mechanisms and Static Strength of Metals
> Mechanics and Mechanisms of Fracture: An Introduction
Published: 01 August 2005
Image
Published: 01 February 2005
Fig. 9.7 Analysis of plane strain upsetting by the FE method. (a) Part for plane strain upsetting. (b) Full model. (c) Quarter model
More
Image
Published: 01 February 2005
Fig. 14.17 Planes of metal flow. (a) Planes of flow. (b) Finished forged shapes. (c) Directions of flow [ Altan et al., 1973 ]
More
Image
in A Simplified Method to Estimate Forging Load in Impression-Die Forging
> Cold and Hot Forging: Fundamentals and Applications
Published: 01 February 2005
Fig. 15.2 Planes and directions of metal flow for two simple shapes. (a) Planes of flow. (b) Finish forging. (c) Directions of flow [ Altan et al., 1983 ]
More
Image
Published: 01 July 2009
Fig. 13.7 Optical micrograph of a basal plane crack due to bend-plane splitting. Source: Herman and Spangler 1963a , b , taken from Aldinger 1979
More
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2004
DOI: 10.31399/asm.tb.tt2.t51060101
EISBN: 978-1-62708-355-3
... Plane-strain tensile test specimen. Source: Ref 33 Fig. 1 Drawn cup with ears in the directions of high r value Fig. 2 Typical forming limit diagram for steel Fig. 3 Effect of thickness and n value on the plane-strain intercept of a forming limit diagram. Source: Ref...
Abstract
Sheet metal forming operations consist of a large family of processes, ranging from simple bending to stamping and deep drawing of complex shapes. Because sheet forming operations are so diverse in type, extent, and rate, no single test provides an accurate indication of the formability of a material in all situations. However, as discussed in this chapter, the uniaxial tensile test is one of the most widely used tests for determining sheet metal formability. This chapter describes the effect of material properties and temperature on sheet metal formability. Information on the types of formability tests is also provided. The chapter discusses the processes involved in uniaxial and plane-strain tensile testing. Examples include the uniaxial tensile test and the plane-strain tensile test which are subsequently described.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.t56020001
EISBN: 978-1-62708-389-8
... and interstitial sites, ion migration, volume expansion, antisite defects, edge and screw dislocations, slip planes, twinning planes, and dislocation passage through precipitates. It also points out important structure-property correlations. References References 1. Liu Y.-X. and Lin Y.C...
Abstract
Alloying, heat treating, and work hardening are widely used to control material properties, and though they take different approaches, they all focus on imperfections of one type or other. This chapter provides readers with essential background on these material imperfections and their relevance in design and manufacturing. It begins with a review of compositional impurities, the physical arrangement of atoms in solid solution, and the factors that determine maximum solubility. It then describes different types of structural imperfections, including point, line, and planar defects, and how they respond to applied stresses and strains. The chapter makes extensive use of graphics to illustrate crystal lattice structures and related concepts such as vacancies and interstitial sites, ion migration, volume expansion, antisite defects, edge and screw dislocations, slip planes, twinning planes, and dislocation passage through precipitates. It also points out important structure-property correlations.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 October 2021
DOI: 10.31399/asm.tb.ciktmse.t56020013
EISBN: 978-1-62708-389-8
... of twinning planes on stacking sequences. The chapter also includes problems on how the formation of precipitates can produce slip planes and how grain boundaries can act as obstacles to dislocation motion. Reference Reference 1. Lu L. , Shen Y. , Chen X. , Qian L. , and Lu K...
Abstract
This chapter provides readers with worked solutions to more than 25 problems related to compositional impurities and structural defects. The problems deal with important issues and challenges such as the design of low-density steels, the causes and effects of distortion in different crystal structures, the ability to predict the movement of dislocations, the influence of impurities on defects, the relationship between gain size and material properties, the identification of specific types of defects, the selection of compatible metals for vacuum environments, and the effect of twinning planes on stacking sequences. The chapter also includes problems on how the formation of precipitates can produce slip planes and how grain boundaries can act as obstacles to dislocation motion.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2005
DOI: 10.31399/asm.tb.mmfi.t69540169
EISBN: 978-1-62708-309-6
... rate, the use of fracture indices and failure criteria, and the ramifications of crack-tip plasticity in ductile and brittle fractures. It goes on to describe the different types of plain-strain and plane-stress fracture toughness, explaining how they are measured and how they are influenced...
Abstract
This chapter discusses various types of material fracture toughness and the methods by which they are determined. It begins with a review of the basic principles of linear elastic fracture mechanics, covering the Griffith-Irwin theory of fracture, the concept of strain energy release rate, the use of fracture indices and failure criteria, and the ramifications of crack-tip plasticity in ductile and brittle fractures. It goes on to describe the different types of plain-strain and plane-stress fracture toughness, explaining how they are measured and how they are influenced by metallurgical and environmental variables and loading conditions. It also examines the crack growth resistance curves of several aluminum alloys and describes the characteristics of fracture when all or some of the applied load is in the plane of the crack.
Image
in Role of Advanced Circuit Edit for First Silicon Debug
> Microelectronics Failure Analysis: Desk Reference
Published: 01 November 2019
Figure 11 Copper plane etched with Ga + only. The uneven etching is due to variation in copper grain orientations. Sample tilted relative to the beam to accentuate surface roughness. [19]
More
Image
Published: 01 November 2019
Figure 13 Sample cleaved at 45 degrees to (100) plane using a long scribe.
More
Image
in Failure Analysis Techniques and Methods for Microelectromechanical Systems (MEMS)[1]
> Microelectronics Failure Analysis: Desk Reference
Published: 01 November 2019
Figure 11 A particle wedging a MEMS sensor element out of plane.
More
Image
in Acoustic Microscopy of Semiconductor Packages
> Microelectronics Failure Analysis: Desk Reference
Published: 01 November 2019
Figure 8 Reflection at normal incidence of a plane wave at a delamination (left) and at a bonded interface (right).
More
Image
in Magnetic Field Imaging for Electrical Fault Isolation[1]
> Microelectronics Failure Analysis: Desk Reference
Published: 01 November 2019
Figure 35 3D XRM image (device in-plane view) showing the defect. Material can be seen bridging two C4 bump landing pads.
More
1