Skip Nav Destination
Close Modal
Search Results for
plain carbon steel
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 321 Search Results for
plain carbon steel
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
Sort by
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240349
EISBN: 978-1-62708-251-8
... for making steel: the electric arc furnace and the basic oxygen furnace. It also provides information on the classification and specifications for various steels, namely, plain carbon steels, low-carbon steels, medium-carbon plain carbon steels, and high-carbon plain carbon steels. The chapter concludes...
Abstract
This chapter discusses various processes involved in the production of steel from raw materials to finished mill products. The processes include hot rolling, cold rolling, forging, extruding, or drawing. The chapter provides a detailed description of two main furnaces used for making steel: the electric arc furnace and the basic oxygen furnace. It also provides information on the classification and specifications for various steels, namely, plain carbon steels, low-carbon steels, medium-carbon plain carbon steels, and high-carbon plain carbon steels. The chapter concludes with a general overview of the factors influencing corrosion in iron and steel and a brief discussion of corrosion-resistant coatings.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560127
EISBN: 978-1-62708-353-9
...Carbides claimed to have formed during tempering of plain carbon steels Table 5-1 Carbides claimed to have formed during tempering of plain carbon steels Designation Name and structure Composition η, eta orthorhombic Fe 2 C (a) (b) (c) χ, chi Hägg carbide monoclinic Fe...
Abstract
This chapter first examines the tempering behavior of plain carbon steels and then that of alloy steels. Next, some correlations are examined which allow estimations of the tempered hardness from the chemical compositions, tempering temperature and tempering time. The chapter then describes the effect of tempering on the mechanical properties of plain carbon steels and the microstructure of plain carbon steels. It shows examples of the structure of plain carbon steels. Additionally, the chapter explains the stages and kinetics of tempering in alloy steels and plain carbon steels. It also describes some methods of estimating the hardness. Finally, the chapter discusses the important problem of temper embrittlement.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 2022
DOI: 10.31399/asm.tb.isceg.t59320217
EISBN: 978-1-62708-332-4
...Abstract Abstract Steel is broadly classified as plain-carbon steels, low-alloy steels, and high-alloy steels. This chapter begins by describing microconstituents of low- and medium-carbon steel, including bainite and martensite. This is followed by a section discussing the effect of alloying...
Abstract
Steel is broadly classified as plain-carbon steels, low-alloy steels, and high-alloy steels. This chapter begins by describing microconstituents of low- and medium-carbon steel, including bainite and martensite. This is followed by a section discussing the effect of alloying elements on steel. Then, it provides an overview of steel casting applications. Next, the chapter reviews engineering guidelines for steel castings and feeder design. The following section provides information on feeding aids. Further, the chapter describes the elements of gating systems for steel castings. It also describes the alloys, properties, applications, and engineering details of steel. Finally, the chapter explains defects in steel castings and presents guidelines for problem solving with examples.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900125
EISBN: 978-1-62708-358-4
...Abstract Abstract The water-hardening steels are either essentially plain carbon steels or very low-alloy carbon steels. As a result, the water-hardening tool steels are the least expensive of tool steels and require strict control of processing and heat treatment to achieve good properties...
Abstract
The water-hardening steels are either essentially plain carbon steels or very low-alloy carbon steels. As a result, the water-hardening tool steels are the least expensive of tool steels and require strict control of processing and heat treatment to achieve good properties and performance. This chapter provides an overview of general processing and performance considerations of water-hardening tool steels. It describes the microstructural characteristics and hardenability of water-hardening tool steels. The chapter discusses the processes involved in the hardening and tempering of water-hardening tool steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140099
EISBN: 978-1-62708-264-8
... embrittlement, and the effect of wt% carbon on toughness. It also explains how alloying elements improve the hardenability and tempering response of plain carbon steels. alloying elements ductility hardenability steels tempering toughness THE IMPORTANCE OF TEMPERING can be illustrated through...
Abstract
Most quenched steels are tempered because the toughness of as-quenched steels is generally very poor. The tempering operation sacrifices strength for improvements in ductility and toughness. This chapter discusses the tempering process, the challenge of tempered martensite embrittlement, and the effect of wt% carbon on toughness. It also explains how alloying elements improve the hardenability and tempering response of plain carbon steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140213
EISBN: 978-1-62708-264-8
.... It also includes labels identifying the microconstituents that form in plain carbon steels under rapid quenching conditions. cementite iron-carbon phase diagram microstructure ...
Abstract
This appendix includes two annotated iron-carbon (Fe-C) phase diagrams. One is a poster-size diagram showing iron-carbon phases up to 7 wt% C along with representative microstructures. The other diagram is close-up view showing the phases that occur from 0 to 1.2 wt% C. It also includes labels identifying the microconstituents that form in plain carbon steels under rapid quenching conditions.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 March 2002
DOI: 10.31399/asm.tb.mgppis.t60400001
EISBN: 978-1-62708-258-7
... the metallographer to the various types of steels and cast irons and explains how they are classified and defined. Classification and designation details are provided for plain carbon steels, alloy steels, and gray, white, ductile, and malleable cast irons. Selected References Selected References • Davis...
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.9781627083539
EISBN: 978-1-62708-353-9
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140107
EISBN: 978-1-62708-264-8
... the presence of carbides during austenitization; plain carbon and low-alloy steels do not. This chapter describes the austenitization process used in each of the two cases, namely single-phase austenitization (the accepted method for plain carbon low-alloy steels) and two-phase austenitization (required...
Abstract
The first step in the hardening of steel is getting it hot enough to form austenite, from which martensite can form upon quenching. Not all steels have the same austenitization requirements, however. High-carbon wear-resistant steels, such as bearing and tool steels, require the presence of carbides during austenitization; plain carbon and low-alloy steels do not. This chapter describes the austenitization process used in each of the two cases, namely single-phase austenitization (the accepted method for plain carbon low-alloy steels) and two-phase austenitization (required for high-carbon steels). It also addresses process-specific issues, explaining how the presence of carbides (in the two-phase process) produces significant changes, and how homogenization and austenite grain growth influence the single-phase process.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 June 2008
DOI: 10.31399/asm.tb.emea.t52240371
EISBN: 978-1-62708-251-8
... SAE/AISI alloy steels high-fracture-toughness steels maraging steels austenitic manganese steels high-strength low-alloy steels dual-phase steels transformation-induced plasticity steels nominal composition ALTHOUGH PLAIN CARBON STEELS are widely used, they are not adequate for all...
Abstract
Alloy steels are alloys of iron with the addition of carbon and one or more of the following elements: manganese, chromium, nickel, molybdenum, niobium, titanium, tungsten, cobalt, copper, vanadium, silicon, aluminum, and boron. Alloy steels exhibit superior mechanical properties compared to plain carbonsteels as a result of alloying additions. This chapter describes the beneficial effects of these alloying elements in steels. It discusses the mechanical properties, nominal compositions, advantages, and engineering applications of various classes of alloy steels. They are low-alloy structural steels, SAE/AISI alloy steels, high-fracture-toughness steels, maraging steels, austenitic manganese steels, high-strength low-alloy steels, dual-phase steels, and transformation-induced plasticity steels.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560469
EISBN: 978-1-62708-353-9
...Abstract Abstract This appendix is a compilation of terms and definitions related to the heat treatment of plain carbon and low-alloy steels. A B C D E F G H I J L M N O P Q R S T U This glossary is reproduced from G. Krauss...
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2003
DOI: 10.31399/asm.tb.pnfn.t65900031
EISBN: 978-1-62708-350-8
... on plain carbon steel than on alloy steel for the same cycle time and temperature. However, the metallurgy will be completely different in terms of both surface compound layer and diffusion zone. Beneath the compound zone at nitriding temperature, the nitrogen dissolves into the α-iron and also reacts...
Abstract
Formation of the nitrided case begins through a series of nucleated growth areas on the steel surface. These nucleating growth areas will eventually become what is known as the compound layer or, more commonly, the white layer. This chapter discusses the influence of carbon on the compound zone. It explains how to control and calculate compound zone thickness. Compound zone thickness can be controlled by dilution, the two-stage Floe process, or by ion nitriding. The chapter describes the factors affecting surface case formation.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140055
EISBN: 978-1-62708-264-8
.... These groups of columns will be of primary interest because they contain most of the alloying elements found in steels. The discussion to this point has been restricted to plain carbon steels. The code for classifying these steels in the United States was developed by two professional organizations...
Abstract
Steels contain a wide range of elements, including alloys as well as residual processing impurities. This chapter describes the chemical composition of low-alloy AISI steels, which are classified based on the amounts of chromium, molybdenum, and nickel they contain. It explains why manganese is sometimes added to steel and how unintended consequences, such as the development of sulfide stringers, can offset the benefits. It also examines the effect of alloying elements on the iron-carbon phase diagram, particularly their effect on transformation temperatures.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 1996
DOI: 10.31399/asm.tb.phtpclas.t64560003
EISBN: 978-1-62708-353-9
... formed from martensite. Note that it is a two phase mixture. The structure consists of small rounded carbide particles in the ferrite grains. Eutectoid temperature and composition The temperature at which α, γ and Fe 3 C are in equilibrium. In plain carbon steels, it is about 723°C. The eutectoid...
Abstract
This chapter describes the two types of Time-Temperature-Transformation (TTT) diagrams used and outlines the methods of determining them. As a precursor to the examination of the decomposition of austenite, it first reviews the phases and microconstituents found in steels. This includes a presentation of the iron-carbon phase diagram and the equilibrium phases. The chapter also covers the common microconstituents that form in steels, including the nomenclature used to describe them. The chapter provides a comparison of isothermal and continuous cooling TTT diagrams. These diagrams are affected by the carbon and alloy content and by the prior austenite grain size, and the way in which these factors affect them is examined.
Book Chapter
Book: Corrosion of Weldments
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2006
DOI: 10.31399/asm.tb.cw.t51820115
EISBN: 978-1-62708-339-3
...Abstract Abstract Martensitic stainless steels are essentially iron-chromium-carbon alloys that possess a body-centered tetragonal crystal structure (martensitic) in the hardened condition. Martensitic stainless steels are similar to plain carbon or low-alloy steels that are austenitized...
Abstract
Martensitic stainless steels are essentially iron-chromium-carbon alloys that possess a body-centered tetragonal crystal structure (martensitic) in the hardened condition. Martensitic stainless steels are similar to plain carbon or low-alloy steels that are austenitized, hardened by quenching, and then tempered for increased ductility and toughness. This chapter provides a basic understanding of grade designations, properties, corrosion resistance, and general welding considerations of martensitic stainless steels. It also discusses the causes for hydrogen-induced cracking in martensitic stainless steels and describes sulfide stress corrosion resistance of type 410 weldments.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2018
DOI: 10.31399/asm.tb.fibtca.t52430027
EISBN: 978-1-62708-253-2
.... The kinetics of decomposition of austenite and the resultant phases formed in plain carbon steel depends on how fast carbon atoms diffuse through it. If the steel is rapidly supercooled to a low temperature such that the rate of diffusion is very low, an altogether different microstructure evolves...
Abstract
This chapter describes the metallurgy, composition, and properties of steels and other alloys. It provides information on the atomic structure of metals, the nature of alloy phases, and the mechanisms involved in phase transformations, including time-temperature effects and the role of diffusion, nucleation, and growth. It also discusses alloying, heat treating, and defect formation and briefly covers condenser tube materials.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140083
EISBN: 978-1-62708-264-8
..., both bars are fully martensitic, and both bars have the same hardness. This means that the chromium addition in 5160 has not changed the hardness of the fresh martensite. Figure 4.13 presents the hardness of fresh martensite versus the %C in steel. This curve applies to both plain carbon...
Abstract
This chapter addresses the concept of hardenability by first describing the basic hardening process for steel, starting with austenitization followed by quenching and tempering. The context also serves to clarify the difference between hardenability and hardness, which are often confused. Most of the information in the chapter is of a practical nature, covering application-oriented topics such as isothermal transformation (IT) and continuous transformation (CT) diagrams which are used to predict and control the rate of formation of ferrite, pearlite, and bainite. The chapter also discusses the effect of grain size and alloying elements and explains how Jominy end quench testing is used to evaluate the hardenability of steel.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 November 2007
DOI: 10.31399/asm.tb.smnm.t52140009
EISBN: 978-1-62708-264-8
... are the chemical element symbols for iron and carbon, and X can be thought of as third-element additions and impurities. In the United States, most steels are classified by a code developed by the American Iron and Steel Institute (AISI). It is customary to partition steel compositions into two categories: plain...
Abstract
Steel is made by adding carbon to iron, producing a solid solution defined by its crystalline structure. This chapter discusses the effect of carbon composition and temperature on the types of structures, or phases, that form. Using detailed phase diagrams, it explains how low-carbon (hypoeutectoid) and high-carbon (hypereutectoid) steels are made, how they are classified, and how they compare. It also describes eutectoid steels which, at 0.77 wt% C, form a separate class noted for its microstructure.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 31 December 2020
DOI: 10.31399/asm.tb.phtbp.t59310163
EISBN: 978-1-62708-326-3
... 0.06 0.06 0.06 (a) Up to 1% Si, 1.5% Cr, or 0.5% Mo Fig. 22 Effect of tempering temperature on hardness of plain carbon versus an alloy steel of the same carbon content; all specimens were 25 mm (1 in.) diameter. The AISI 4140 steel was oil quenched from 855 °C (1575 °F); the AISI...
Abstract
This chapter discusses the processes involved in the heat treatment of steel, namely austenitizing, hardening, quenching, and tempering. It begins with an overview of austenitizing of steels by induction heating, followed by a discussion on the processes involved in transformation of the soft austenite into martensite or lower bainite in the hardening operation. The chapter provides information on various quenching systems and a description of quenching techniques, namely austempering, martempering, and patenting. Difficulties associated with hardening of steel are discussed. Further, the chapter describes the equipment used for and principal variables of tempering. It discusses the causes for various forms of embrittlement due to tempering. Information on multiple tempering, protective-atmosphere tempering, and selective tempering are also provided, along with processes involved in selection of tempering temperature. The chapter ends with a section discussing various effects, advantages, and disadvantages of precipitation hardening.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 December 2000
DOI: 10.31399/asm.tb.htgpge.t67320001
EISBN: 978-1-62708-347-8
...Abstract Abstract Modern gears are made from a wide variety of materials. Of all these, steel has the outstanding characteristics of high strength per unit volume and low cost per pound. Although both plain carbon and alloy steels with equal hardness exhibit equal tensile strengths, alloy...
Abstract
Modern gears are made from a wide variety of materials. Of all these, steel has the outstanding characteristics of high strength per unit volume and low cost per pound. Although both plain carbon and alloy steels with equal hardness exhibit equal tensile strengths, alloy steels are preferred because of higher hardenability and the desired microstructures of the hardened case and core needed for the high fatigue strength of gears. This chapter provides an overview of the key considerations involved in the selection and application of heat treating processes for alloy steel gears and serves as an introduction to the subsequent chapters in this book.