Skip Nav Destination
Close Modal
Search Results for
physical vapor deposition
Update search
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
Filter
- Title
- Authors
- Author Affiliations
- Full Text
- Abstract
- Keywords
- DOI
- ISBN
- EISBN
- Issue
- ISSN
- EISSN
- Volume
- References
NARROW
Format
Topics
Book Series
Date
Availability
1-20 of 306 Search Results for
physical vapor deposition
Follow your search
Access your saved searches in your account
Would you like to receive an alert when new items match your search?
1
Sort by
Image
Published: 01 October 2011
Fig. 11.10 Hardness of various physical vapor deposition (PVD) coatings and chemical vapor deposition (CVD) coatings used for tooling materials. Source: Ref 11.9
More
Image
Published: 01 August 2012
Fig. 16.15 Applications of physical vapor deposition (PVD) coatings. (a) PVD TiN used for soda can tab punch. (b) PVD TiCN used for AA battery casing extrusion punch. Source: Ref 16.55
More
Image
Published: 01 August 2012
Fig. 16.16 (a) Crack in physical vapor deposition (PVD) layer due to low hardness of substrate. (b) A solution to this problem is duplex coating (nitriding + PVD). Source: Ref 16.5
More
Image
Published: 01 August 2012
Fig. 16.18 Effect of surface roughness ( R a ) on physical vapor deposition coating. Material is PM HSS, powder metallurgy high-speed steel. Source: Ref 16.6
More
Image
Published: 01 August 2012
Fig. 16.19 Flaking of physical vapor deposition coating on a D2 tool steel, due to residual stresses caused by surface features. Source: Ref 16.6
More
Image
Published: 01 July 2009
Fig. 22.1 Schematic illustrations of physical vapor deposition processing methods. (a) Vacuum evaporation. (b) and (c) Sputter deposition in a plasma environment. (d) Sputter deposition in vacuum. (e) Ion plating in a plasma environment with a thermal evaporation source. (f) Ion plating
More
Image
Published: 01 June 2008
Fig. 22.20 Hardness of coatings for tool materials. PVD, physical vapor deposition; CVD, chemical vapor deposition
More
Image
Published: 01 June 2008
Fig. 22.21 Physical vapor deposition coatings on cemented carbide substrates. (a) TiN. (b) TiCN. (c) TiAlN. Source: Ref 3
More
Image
in Material Modifications (Coatings, Treatments, etc.) for Tribological Applications
> Tribomaterials: Properties and Selection for Friction, Wear, and Erosion Applications
Published: 30 April 2021
Fig. 12.4 Titanium nitride physical vapor deposition coating spall on a cemented carbide tool bit. Original magnification: 1000×
More
Image
Published: 01 November 2010
Image
Published: 01 November 2010
Image
in Thin Film Deposition Techniques—An Overview
> Introduction to Thin Film Deposition Techniques: Key Topics in Materials Science and Engineering
Published: 31 January 2023
Book Chapter
Book: Introduction to Thin Film Deposition Techniques: Key Topics in Materials Science and Engineering
Series: ASM Technical Books
Publisher: ASM International
Published: 31 January 2023
DOI: 10.31399/asm.tb.itfdtktmse.t56060001
EISBN: 978-1-62708-440-6
... techniques. Physical vapor deposition (PVD) techniques include sputtering, e-beam evaporation, arc-PVD, and ion plating and are best suited for elements and compounds with moderate melting points or when a high-purity film is required. The remainder of the chapter covers chemical vapor deposition (CVD...
Abstract
This chapter presents the theory and practice associated with the application of thin films. The first half of the chapter describes physical deposition processes in which functional coatings are deposited on component surfaces using mechanical, electromechanical, or thermodynamic techniques. Physical vapor deposition (PVD) techniques include sputtering, e-beam evaporation, arc-PVD, and ion plating and are best suited for elements and compounds with moderate melting points or when a high-purity film is required. The remainder of the chapter covers chemical vapor deposition (CVD) processes, including atomic layer deposition, plasma-enhanced and plasma-assisted CVD, and various forms of vapor-phase epitaxy, which are commonly used for compound films or when deposit purity is less critical. A brief application overview is also presented.
Book Chapter
Series: ASM Technical Books
Publisher: ASM International
Published: 01 January 1998
DOI: 10.31399/asm.tb.ts5.t65900305
EISBN: 978-1-62708-358-4
... Abstract Surface modification technologies improve the performance of tool steels. This chapter discusses the processes involved in oxide coatings, nitriding, ion implantation, chemical and physical vapor deposition processing, salt bath coating, laser and electron beam surface modification...
Abstract
Surface modification technologies improve the performance of tool steels. This chapter discusses the processes involved in oxide coatings, nitriding, ion implantation, chemical and physical vapor deposition processing, salt bath coating, laser and electron beam surface modification, and boride coatings that improve the performance of hot-work and high-speed tool steels.
Series: ASM Technical Books
Publisher: ASM International
Published: 01 August 2012
DOI: 10.31399/asm.tb.smfpa.t53500317
EISBN: 978-1-62708-317-1
... galling wear physical vapor deposition plating sheet metal forming thermal diffusion coating tool wear wear resistance A STAMPING TOOL must be replaced or repaired periodically, when it fails to produce parts within the specified tolerance and/or required surface quality. This is mainly caused...
Abstract
This chapter discusses the types of failures that can occur in sheet metal forming tools and explains how to mitigate their effects. It describes the factors that influence galling and wear and the benefits of special treatments and coatings. It provides information on through hardening, case (surface) hardening, and nitriding as well as hard chrome plating, vapor deposition, and thermal diffusion coating. It explains how to measure wear resistance using various tests and provides guidelines for selecting tool materials, treatments, and coatings.
Image
in Introduction to Surface Engineering for Corrosion and Wear Resistance
> Surface Engineering for Corrosion and Wear Resistance
Published: 01 March 2001
Fig. 2 Surface engineering processes used to prevent wear. CVD, chemical vapor deposition; PVD, physical vapor deposition; EB, electron beam
More
Image
Published: 01 August 2012
Fig. 16.26 Ranking of ten tool materials, treatments, and coatings, using a progressive die. CVD, chemcial vapor deposition; PVD, physical vapor deposition. Source: Ref 16.51
More
Image
Published: 01 August 2012
Fig. 16.14 Typical coating thicknesses and process temperature for common coating methods. CVD, chemical vapor deposition; TD, thermal diffusion; PVD, physical vapor deposition. Source: Ref 16.54
More
Image
in Consequences of Using Advanced High-Strength Steels
> Advanced High-Strength Steels: Science, Technology, and Applications, Second Edition
Published: 31 October 2024
Fig. 12.18 Effect of tool material and die surface coating on tool life. DP, dual phase; CVD, chemical vapor deposition; PVD, physical vapor deposition. Source: Ref 12.1
More
Image
Published: 01 August 2012
Fig. 16.3 (a) Use of inserts in a cast steel stamping die. CVD, chemical vapor deposition; PVD, physical vapor deposition. Source: Ref 16.8 . (b) Novel method of casting iron and steel. Source: Ref 16.23
More
1